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1. Introduction

Higher derivations, here called iterative derivations, were introduced by H. Hasse
and F. K. Schmidt, [H-S]. The basic example is the iterative derivation fqðnÞz gnf0, defined

on the field CðzÞ, and given by the formulas qðnÞz zm ¼ m

n

� �
zm�n. If the field C has char-

acteristic 0, then qðnÞz is just the operator
1

n!

d

dz

� �n
on CðzÞ. We are interested in the case

where C is an algebraically closed field of characteristic p > 0. More generally, we consider
a field K with an iterative derivation fqðnÞK gnf0 such that its field of constants C, i.e., the

set of elements a A K with q
ðnÞ
K ðaÞ ¼ 0 for all nf 1, is algebraically closed, has characteris-

tic p > 0 and is di¤erent from K. A (linear, iterative) di¤erential equation over the iterative
di¤erential field K (or ID-field for short) can be given as a vector space M over K of finite
dimension, equipped with a sequence of additive maps q

ðnÞ
M : M !M, nf 0 satisfying the

rules:

(a) q
ð0Þ
M is the identity.

(b) q
ðnÞ
M ð fmÞ ¼

P
a;bf0;aþb¼n

q
ðaÞ
K ð f Þq

ðbÞ
M ðmÞ for all nf 0, f A K, m A M.

(c) q
ðaÞ
M � q

ðbÞ
M ¼

aþ b

b

� �
q
ðaþbÞ
M .

As early as 1963, these (linear, iterative) di¤erential equations have been studied by
H. Okugawa, [O]. He proposed a Picard-Vessiot theory along the lines of R. E. Kolchin’s
work. His theory remained incomplete since the existence and uniqueness of a Picard-
Vessiot extension for a given (linear, iterative) di¤erential equation could not be established
at the time. The paper does not contain explicit examples and there seems to be no sequel
to this work. In the present paper we give a full presentation of the Picard-Vessiot theory
and relate this to the Tannakian approach. The main part of the paper is concerned with
the inverse problem, i.e., with the question:
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Which (reduced ) linear algebraic group G over C can be realized as the di¤erential

Galois group of some linear, iterative di¤erential equation over K ?

For the field K ¼ C
�
ðzÞ
�
, with C algebraically closed and provided with the

standard iterative di¤erentiation, a complete answer is given in theorem 6.6. The case
where K is the function field of an irreducible, smooth, projective curve X over an alge-
braically closed field C of characteristic p > 0 seems the most interesting one. For the
iterative di¤erential modules one prescribes a finite, non-empty, singular locus SHX . Our
results and conjecture for this situation are closely related to Abhyankar’s conjecture. The
latter concerns Galois covers of curves in characteristic p > 0 with prescribed ramification.
Abhyankar’s conjecture has been proved by M. Raynaud [R] and D. Harbater [H1], [H2].
This ‘‘conjecture’’ turns out to be a special case of our conjecture concerning the inverse
problem for linear iterative di¤erential equations over function fields.

In this paper we solve the inverse problem for connected linear algebraic groups.
The final section explores the strong relation between linear iterative di¤erential equa-
tions over a field of characteristic p and linear p-adic di¤erential equations. Finally a link
between Grothendieck’s conjecture on p-curvatures and linear iterative di¤erential modules
is described.

2. Iterative derivations and di¤erential equations

2.1. Iterative derivations. For any ring R (commutative and with a unit element) an
iterative derivation is a sequence of additive maps qðnÞ: R! R, nf 0 satisfying:

1. qð0Þ is the identity.

2. qðnÞð fgÞ ¼
P

a;bf0;aþb¼n
qðaÞð f ÞqðbÞðgÞ.

3. qðnÞqðmÞ ¼ nþm

n

� �
qðnþmÞ.

For the case QHR, one observes that qðnÞ ¼ 1

n!
ðqð1ÞÞn and thus the iterative deri-

vation is determined by the ordinary derivation qð1Þ. In the sequel we will suppose that the
ring R has characteristic p > 0.

Some observations and examples of iterative derivations. (1) A nice reformulation of
an iterative derivation on R is the following:

Consider for a sequence of maps qðnÞ: R! R the map fT : R! R½½T ��, given by
fTðaÞ ¼

P
nf0

qðnÞðaÞT n. Then properties 1. and 2. are equivalent to fT is a homomorphism

of rings such that the composition with the augmentation map, i.e., R! R½½T �� ! R, is
the identity. We extend fT to a map R½½T �� ! R½½T �� (with the same name) by putting

fT

�P
nf0

anT
n

�
¼

P
nf0;mf0

qðmÞðanÞTmT n

and this is equal to
P
nf0

� P
kþl¼n

qðkÞðal Þ
�
T n. Again fT is also a homomorphism of rings.

Condition 3. is now equivalent to fT1þT2
¼ fT1

� fT2
, say as maps from R to R½½T1;T2��.
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(2) One has qðn1Þ � � � qðnsÞ ¼ n1 þ � � � þ ns

n1; . . . ; ns

� �
qðn1þ���þnsÞ with

n1 þ � � � þ ns

n1; . . . ; ns

� �
equal to

ðn1 þ � � � þ nsÞ!
n1! � � � ns!

. Write any positive integer n as a0 þ a1pþ � � � þ akp
k with

ai A f0; 1; . . . ; p� 1g. Then ðqð1ÞÞa0 � � � ðqðpkÞÞak ¼ c � qðnÞ, where c is some non-zero ele-
ment of Fp. Thus any iterative derivative is determined by the qðp

kÞ for all kf 0. The ring
of constants is defined as the intersection of the kernels of all qðnÞ with nf 1.

(3) Let C be any field of characteristic p and K ¼ C
�
ðzÞ
�
. Define the iterative

derivation fqðnÞz g by the formula qðnÞz

�P
m

amz
m
�
¼
P
m

m

n

� �
amz

m�n (derived from
1

n!

d

dz

� �n
in characteristic 0). Then the field of constants is equal to C.

(4) The field CðzÞ can be seen as a subfield of C
�
ðzÞ
�
. The field CðzÞ is

invariant under the maps qðnÞz of (3). This induces an iterative derivation on CðzÞ, again
denoted by fqðnÞz g. In the terminology of (1), the iterative di¤erential fqðnÞz g is given by the
fT : CðzÞ ! CðzÞ½½T �� with the formula fTðzÞ ¼ zþ T .

(5) Let a separable algebraic field extension KHL and an iterative derivation on K

be given. Then this iterative derivation extends in a unique way to one of L. This result is
due to F. K. Schmidt and the proof can be given as follows:

The iterative derivation on K is equivalent to a fT : K ! K ½½T �� with the additional
property fT1þT2

¼ fT2
� fT1

. The image fTðKÞ is a coe‰cient field for K½½T ��. The map fT ,
considered as a homomorphism K ! L½½T ��, extends in a unique way to a homomorphism
cT : L! L½½T �� which is modulo ðTÞ the identity. Indeed, the statement translates into the
well known fact that the field fTðKÞHL½½T �� extends in a unique way to a coe‰cient field
for L½½T ��. The unicity of cT implies the rule cT1þT2

¼ cT2
� cT1

. For any separable exten-
sion KHL one can show that any iterative derivation on K extends to one on L. This
extension is in general not unique.

Let K=k be a separable field extension of transcendence degree 1. A complete
description of all iterative derivations of K=k, i.e., the iterative derivations which are trivial
on k, has been given by F. K. Schmidt. The next proposition generalizes this result.

Proposition 2.2. (1) Let fqðnÞK g be an iterative derivation on the field K such

that qK :¼ q
ð1Þ
K 3 0. Define for sf 1 the subfield Ks of K by Ks :¼ fa A K j qðp

jÞ
K a ¼ 0 for

0e je s� 1g. There exists an element z A K (depending on s) such that fz j j 0e j < psg is

a basis of K over Ks and q
ðaÞ
K zb ¼ b

a

� �
zb�a for all b and all a < ps.

(2) Let K be a field of characteristic p > 0 and let a sequence of subfields

KIK1 IK2 I � � � be given such that, for each sf 1, the extension K IKs is purely

inseparable of degree ps and is generated by one element. Then:

(a) There exists an iterative derivation fqðnÞg on K such that, for each sf 1, one has

Ks ¼ fa A K j qðp jÞa ¼ 0 for 0e je s� 1g.
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(b) The collection of all iterative derivations on K having the property of (a) above is,
in a natural way, isomorphic to the set S consisting of the elements in the projective limit

lim � K=Ks which map to a non-zero element of K=K1.

(3) Let K=k be a separable extension such that ½K : kK p� ¼ p. The set of all iterative

derivatives of K=k with qð1Þ3 0 is, in a natural way, isomorphic to the set S of elements in the

projective limit lim � K=kK pn

, which map to a non-zero element of K=kK p.

Proof. (1) The statement is proved by induction on s. It is given that qK 3 0 and
q
p
K ¼ 0. Choose an element a with qKa3 0 and let m > 1 be minimal such that qm

K a ¼ 0.
Then b :¼ qm�1

K a A K1 and z ¼ b�1qm�2
K a satisfies qKz ¼ 1. By induction on n one shows

that for 1e ne p the kernel of qn
K is a vector space over K1 with basis 1; z; . . . ; zn�1. This

proves the case s ¼ 1. We remark further that the kernel of q p�1
K coincides with the image

of qK .

The case s ¼ 2. Since qK commutes with q
ðpÞ
K one has that q

ðpÞ
K maps K1 into itself.

Using the formulas q
ðpÞ
K ð f pÞ ¼ ðqK f Þp and ðqðpÞK Þ

p ¼ 0 one finds that zp A K1, q
ðpÞ
K zp ¼ 1

and that 1; zp; z2p; . . . ; zðp�1Þp is a basis of K1 over K2. Now we try to find an x A K1 such

that q
ðpÞ
K ðz� xÞ ¼ 0. This amounts to showing that q

ðpÞ
K z lies in the image of q

ðpÞ
K on K1.

As before, this image is equal to the kernel of ðqðpÞK Þ
p�1 on K1. The element q

ðpÞ
K z lies in

this kernel since ðqðpÞK Þ
p ¼ 0. After replacing z by z� x we have proved the case s ¼ 2. The

induction step is proved in the same way.

(2) part (a) An easy calculation shows that the condition on the sequence of fields
KIK1 I � � � implies that any field L with KILIKs is equal to either K or some Kj with
1e je s. Take any z A KnK1. Then K ¼ KsðzÞ holds for every sf 1. One defines now an

iterative derivation, called fqðnÞz g, by the formulas:

For any sf 1 the qn
z , with n < ps, are Ks-linear and qðnÞz zm ¼ m

n

� �
zm�n for all m

and all n < ps.

It is easily verified that the fqðnÞz g are well defined, form an iterative derivation of K
and that Ks ¼ fa A K j qðp jÞ

z a ¼ 0 for 0e je s� 1g holds for every sf 1. This proves part
(a) of (2).

(2) part (b) For any x A KnK1 the iterative derivation fqðnÞx g has been defined in the
proof of (2) part (a). One observes further that for elements x; y A KnK1 the following
statements are equivalent:

(i) x� y A Ks.

(ii) qðnÞx ¼ qðnÞy for all n < ps.

Let now x be an element of S, represented by a sequence of elements x1; x2; x3; . . .
in K such that x1 B K1 and xs � xsþ1 A Ks for all sf 1. One defines an iterative derivation
fqðnÞx g on K by the formula:

Matzat and van der Put, Iterative di¤erential equations4

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/27/15 1:42 AM



For every sf 1 and every n < ps the map q
ðnÞ
x is equal to qðnÞxs

. From (1) it follows that

every iterative derivation fqðnÞg on K such that Ks ¼ fa A K j qðp jÞa ¼ 0 for 0e je s� 1g
holds for all sf 1, is equal to some fqðnÞx g. The unicity of x follows from the equivalence of
the above properties (i) and (ii).

(3) is the special case of (2) part (b) corresponding to the choice Ks ¼ kK ps

for all
sf 1. r

The structure of the iterative derivations for a given field is rather complicated.
In particular, there seems no possibility to construct a universal iterative derivation.
For a field like K ¼ k

�
ðxÞ
�
with k ¼ kp, one can give a more or less explicit descrip-

tion of the projective limit lim � K=Ks. Consider the collection Q of all formal expressions

h ¼
Py

n¼�y
anx

n satisfying the conditions:

(i) All an A k and a0 ¼ 0.

(ii) For every sf 1 the collection fn A Z j an 3 0; ps a ng has a minimal element.

Every h as above, induces for every sf 1 an element of K=Ks, obtained by deleting
the terms anx

n with psjn. In this way, h maps to an element of the above projective limit.
This leads to a bijection Q! lim � K=Ks.

2.2. Iterative di¤erential modules. In the sequel we will work with a fixed field K

with a non trivial iterative derivation, denoted by f 7! f ðnÞ for all nf 0 (or sometimes
f 7! q

ðnÞ
K f ). We will assume that the ordinary derivation f 7! f ð1Þ is not the zero map. The

field of constants of K will be denoted by C. An iterative di¤erential module (or ID-module
for short) M is a finite dimensional vector space over K equipped with a set of additive

maps qð�Þ: M !M satisfying the rules:

(1) qð0Þ is the identity.

(2) qðnÞð fmÞ ¼
P

a;bf0;aþb¼n
f ðaÞqðbÞðmÞ.

(3) qðnÞqðmÞ ¼ nþm

n

� �
qðnþmÞ.

After a choice of a basis of M over K one translates this into a set of matrix
equations. The solution space of an iterative di¤erential module can be defined as the
set fm A M j qðnÞðmÞ ¼ 0 for all n > 0g. One can show that the solution space is a vector
space over C of dimension less than or equal to the dimension of M over K . In case these
dimensions are equal, the iterative module is said to be trivial. Thus the iterative di¤er-
ential module is trivial if and only if there is a basis e1; . . . ; es of M over K such that
qðnÞei ¼ 0 for all n > 0 and all i.

Matzat and van der Put, Iterative di¤erential equations 5
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One can define iterative di¤erential modules in another way. Consider the skew ring
of operators D :¼ K½qðnÞ; nf 0� defined by the relations:

qð0Þ ¼ 1;

qðnÞqðmÞ ¼ nþm

n

� �
qðnþmÞ

and

qðnÞf ¼
P

a;bf0;aþb¼n
f ðaÞqðbÞ with f A K:

Then a left D-module of finite dimension over K is the same thing as an iterative di¤eren-
tial module over K .

The category of all iterative di¤erential modules over K. By IDK one denotes
the category whose objects are the iterative di¤erential modules over K. A morphism f

in this category is a K-linear map f : M1 !M2 between two ID-modules such that

qðnÞ � f ¼ f � qðnÞ for all n. One sees that HomðM1;M2Þ is a vector space over C. Kernels,
cokernels, direct sums are present and IDK is an abelian category. Further constructions
of linear algebra are:

Internal Hom, HomðM1;M2Þ which consists of all K-linear maps l : M1 !M2. The
ID-module structure on HomðM1;M2Þ is given by the formula

qðnÞðlÞ ¼
P

a;bf0;aþb¼n
ð�1ÞaqðaÞ � l � qðbÞ:

(The opposite sign can also be chosen.)

Tensor product, M1 nM2, defined as M1 nK M2 with the ID-module structure given

by the formula qðnÞðm1nm2Þ ¼
P

a;bf0;aþb¼n
ðqðaÞm1Þn ðqðbÞm2Þ.

Symmetric powers, exterior powers et cetera are defined as usual.

The category is a C-linear tensor category in the terminology of [D-M]. For the
case that the field of constants C is algebraically closed, it can be derived from Deligne’s
work (see [D]) on Tannakian categories that IDK is a neutral Tannakian category. In other
words, IDK is as C-linear tensor category isomorphic to the category ReprG of the finite
dimensional representations of a certain a‰ne group scheme over C. In particular, fix
an ID-module M and consider the full subcategory ffMgg of IDK generated by all tensor
products of M and its dual M �. Then ffMgg is also a neutral Tannakian category and
isomorphic to ReprG for a certain linear algebraic group G over C. This group will be
called the Galois group of the module M. In the sequel we will treat ID-modules with the
more down to earth method of Picard-Vessiot rings.

Matzat and van der Put, Iterative di¤erential equations6
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3. Picard-Vessiot theory

In the sequel we will suppose that the field K of characteristic p > 0 is equipped with an

iterative derivation such that its field of constants C is algebraically closed and di¤erent from

K. We will follow the presentation of the classical Picard-Vessiot theory given in [P2] and
provide the few adaptions which are needed in the present situation.

Definitions 3.1. An iterative di¤erential ring R (or ID-ring for short) over K is a
(commutative) K-algebra with 1, having a set of additive maps qðnÞ: R! R, extending the
iterative derivation on K, such that:

(1) qð0Þ is the identity.

(2) qðnÞð fgÞ ¼
P

a;bf0;aþb¼n
qðaÞð f ÞqðbÞðgÞ.

(3) qðnÞqðmÞ ¼ nþm

n

� �
qðnþmÞ.

An iterative di¤erential ideal (or ID-ideal for short) I HR is an ideal invariant under
all qðnÞ. R is called simple if the only iterative di¤erential ideal (3R) is 0.

Lemma 3.2. (1) A simple iterative di¤erential ring R has no zero divisors.

(2) Let R be a simple iterative di¤erential ring which is finitely generated over K. Then
its field of fractions (equipped with the unique extension of the iterative derivation) has C as

field of constants.

Proof. (1) Define f : R! R½½T �� by fðaÞ ¼
P
nf0

qðnÞðaÞT n. Then f is a homomor-

phism of rings. Let q be any prime ideal of R. The map c : R!f R½½T �� ! ðR=qÞ½½T �� is
again a homomorphism of rings. Let I denote the kernel of c. It su‰ces to show that I ¼ 0
since ðR=qÞ½½T �� has no zero divisors. An element a belongs to I if and only if all qðnÞðaÞ A q.

For a A I one also has qðmÞðaÞ A I since qðnÞqðmÞðaÞ ¼ nþm

n

� �
qðnþmÞðaÞ A q. Thus I is an

iterative di¤erential ideal and is by assumption 0.

(2) Let a3 0 be an element of the field of fractions of R such that qðnÞa ¼ 0
for all nf 1. Let I :¼ fb A R j ba A Rg. Then for any b A I (and nf 1) one has
qðnÞðbaÞ ¼ qðnÞðbÞa A R. Thus I is a non-zero iterative di¤erential ideal and is therefore
equal to R. Consequently a A R. For any constant c one has that a� c is either invertible
or equal to 0. As in the paper [P2] it follows that a lies in the field of constants of K. r

Definition 3.3. Let M be an iterative di¤erential module over K . Let e1; . . . ; es
be a basis of M over K . Let An ¼

�
Anði; jÞ

�
denote the matrix of the map q

ðnÞ
M with

respect to this basis. Thus q
ðnÞ
M ei ¼

P
j

Anð j; iÞej for all i; j; n. One considers the vector

y1e1 þ � � � þ yses A M. Let q
ðnÞ
M ðy1e1 þ � � � þ ysesÞ ¼ w1e1 þ � � � þ wses and write y;w A K s

for the column vectors with entries yi and wi. Then

w ¼ qðnÞyþ A1q
ðn�1Þyþ � � � þ An�1q

ð1Þyþ Any;

Matzat and van der Put, Iterative di¤erential equations 7
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where each qðmÞ operates coordinatewise on column vectors. The set of equations
q
ðnÞ
M ðy1e1 þ � � � þ ysesÞ ¼ 0, nf 1 translates into a set of equations for the column vector y

which can be rewritten as a sequence of matrix equations qðnÞy ¼ Bny, nf 1 for certain
matrices Bn.

A fundamental matrix F (with coe‰cients is some iterative di¤erential ring over K)
is an invertible matrix satisfying qðnÞF ¼ BnF for all nf 0. A Picard-Vessiot ring for the
above iterative di¤erential module M is an iterative di¤erential ring over K such that:

(1) R is simple.

(2) Over R there exists a fundamental matrix for M.

(3) R is generated over K by the coe‰cients of a fundamental matrix for M.

A Picard-Vessiot field for M is the field of fractions of a Picard-Vessiot ring for M.

Lemma 3.4. For any iterative di¤erential module there exists a Picard-Vessiot ring.
This ring is unique up to a (non canonical ) isomorphism of K-algebras respecting the iterative

derivations.

Proof. After choosing a basis, the iterative di¤erential module translates into a set
of matrix equations qðnÞy ¼ Bny, nf 0. The matrices Bn have coe‰cients in K and satisfy
a set of relations, namely the translations of the defining properties of ID-module. One
introduces a matrix of indeterminates ðXi; jÞ with determinant d and defines the iterative

di¤erential ring R0 :¼ K fXi; jg;
1

d

� �
. The iterative derivation on R0 extends the one of K

and is given by ðqðnÞXi; jÞ ¼ Bn � ðXi; jÞ for all nf 0. Let I HR0 be an ideal which is maxi-
mal among the set of all iterative ideals of R0. Then R :¼ R0=I is clearly a Picard-Vessiot
ring for the given ID-module. For the remaining part of the proof one can copy the proofs
of [P2]. r

The di¤erential Galois group G of an iterative di¤erential module M is the group
of the di¤erential automorphisms of R=K, where R is a Picard-Vessiot ring for M. Let
V HRnM denote the solution space of the ID-module M, i.e., V consists of the elements
v A RnM with qðnÞv ¼ 0 for all nf 1. Then G acts faithfully on V and G can be identified
with a reduced algebraic subgroup of GLðVÞ.

Along the lines of [P2], one can show that Z ¼ SpecðRÞ is a G-torsor over the field
K . The usual Galois correspondence for Picard-Vessiot fields is a consequence of this
fact. Especially one has the following results (compare [P2], proposition 3.6 and 3.7 for the
classical case):

Theorem 3.5. Let M be an iterative di¤erential module over K. Let L=K be the cor-

responding Picard-Vessiot field and G its di¤erential Galois group. There is a Galois corre-

spondence, given by H 7! LH, between the reduced algebraic subgroups of G and the

intermediate iterative di¤erential fields of L=K .

Matzat and van der Put, Iterative di¤erential equations8
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4. Examples

4.1. Finite Galois extensions of K . Let LIK be a finite Galois extension of K

of degree m > 1. The iterative derivation of K extends in a unique way to one on L

which will be denoted by fqðnÞL g. View now M :¼ L as a vector space over K equipped
with the fqðnÞL g. This is an ID-module. The field of constants of L with respect to the
iterative di¤erentiation is also C. Indeed, take x A L with q

ðnÞ
L x ¼ 0 for all nf 1. Let

xd þ ad�1x
d�1 þ � � � þ a1xþ a0 ¼ 0 be its minimal equation over K. This equation is sep-

arable. Let ~KK denote the splitting field of the above polynomial over K. Then, since the
Galois action of ~KK=K commutes with the iterative derivation on ~KK we have that all the
roots of the polynomial are constants. Therefore all the ai are constants. Since C is alge-
braically closed, one has that x A C. We conclude that M is not a trivial module since
the solution space of M has dimension 1 over C. The ID-module LnM is trivial, since
LnK L is isomorphic with the direct sum of m copies of L. Thus it contains as set of
constants the direct sum of m copies of C. It follows that L contains a Picard-Vessiot ring
(actually a field). The Galois group GalðL=KÞ acts faithfully on the solution space of
LnM. We conclude that L is the Picard-Vessiot field of the ID-module M and that
GalðL=KÞ is its di¤erential Galois group.

4.2. Iterative di¤erential modules of dimension one. The one-dimensional ID-
module M ¼ Ke0 is equipped with a set of maps qðnÞ. We first note that ðqð1ÞÞp is 0 on M.
Thus M, as ordinary di¤erential module over K, has p-curvature 0. This implies that
M has a basis e1 such that qð1Þe1 ¼ 0. The kernel of qð1Þ on M is clearly K1e1 where
K1 ¼ fa A K j qð1ÞðaÞ ¼ 0g. The operator qðpÞ commutes with qð1Þ. It follows that K1e1 is

invariant under qðpÞ. The restriction of the fqðpnÞg to K1e1 defines an ID-module over the
field K1 with as iterative derivation the one induced by K (and a shift of the indices if one
wants to be precise). The same argument shows that K1e1 ¼ K1e2 for a certain element
e2 such that qðpÞe2 ¼ 0. One can continue this process and produce a sequence of ele-
ments e0; e1; e2; e3; . . . such that Ke0 ¼ Ke1;K1e1 ¼ K1e2;K2e2 ¼ K2e3; . . . : The fields Kn

are defined by: K0 ¼ K , K1 is the kernel of qð1Þ on K; . . . ;Kn ¼ fa A K j qðmÞa ¼ 0 for all
0 < m < png. We note that Kn is also equal to fa A K j qðp jÞa ¼ 0 for all 0e j < ng.
Moreover qðmÞen ¼ 0 for all 0 < m < pn. In other words M is a trivial iterative di¤erential
module for every ‘‘truncation’’. If one could find a ‘‘limit’’ f for the sequence en then
Ke ¼ Kf and qðnÞf ¼ 0 for all n > 0. The existence of a limit can be formulated with
projective limits. Namely the above sequence feng produces w.r.t. a fixed basis e ¼ e0 of
the 1-dimensional module an element of the projective limit lim � K �=K �n . The set of equi-
valence classes of 1-dimensional ID-modules is then seen to be the cokernel IsomK ;1 of
the canonical map K � ! lim � K �=ðKnÞ�. This cokernel has a group structure. The group
structure coincides with the tensor product of (isomorphy classes of ) the 1-dimensional ID-
modules.

Lemma 4.1. For the field K :¼ C
�
ðzÞ
�
(with the standard iterative derivation) the

group IsomK;1 is isomorphic to Zp=Z.

Proof. The group K � can be decomposed as C � � zZ �U with U :¼ 1þ zC½½z��.
The field Kn is equal to C

�
ðxpnÞ

�
and thus K �n ¼ C � � zp

nZ �Upn

. The projective limit

of K �=K �n is thus isomorphic to Zp � lim � U=Upn

. It is easily seen that the canonical map

U ! lim � U=Upn

is an isomorphism. This proves the statement. r
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Explicit examples for lemma 4.1. For any p-adic integer a, i.e., a A Zp, the ele-

ment
a

n

� �
:¼ aða� 1Þ � � � ða� nþ 1Þ

n!
belongs to Zp. Its reduction modulo p in Fp will be

denoted by
a

n

� �
. One defines the ID-module Ke by the formulas qðnÞe ¼ a

n

� �
z�ne. It is

easily verified that this is indeed an ID-module. The image of this module in the group
IsomK ;1 can be identified with the image of a in IsomK ;1. There are two cases:

In the first case a is a rational number with denominator n (not divisible by p). Then
the field extension C

�
ðz1=nÞ

�
IK is the Picard-Vessiot field and the Galois group is cyclic

of order n.

In the second case a is not rational. Then the Picard-Vessiot field is the transcen-

dental extension KðyÞ with extension of the iterative derivation given by yðnÞ ¼ a

n

� �
z�ny.

Its di¤erential Galois group is Gm;C (i.e., the multiplicative group over C).

In general, a one-dimensional ID-module M over any K translates, after a choice
of a basis of M, into a set of equations qðnÞy ¼ an y. The di¤erential Galois group is a
reduced subgroup of Gm;C . This group is cyclic of order m (and pam) if and only if mf 1
is minimal such that the set of equations qðnÞf ¼ man f has a non-zero solution g in K.
Its Picard-Vessiot field is then Kð ffiffiffi

gm
p Þ. In the opposite case, the Picard-Vessiot field is the

transcendental extension KðyÞ with iterative di¤erentiation given by qðnÞy ¼ an y for all
nf 0.

Proposition 4.2. C denotes an algebraically closed field of characteristic p > 0. Let X
denote a connected, smooth, projective curve over X. The Jacobian variety of X is denoted by

J. Let K denote its function field and provide K with a non-trivial iterative derivation. There is
a natural exact sequence

0! TpðJÞ ! lim � K �=ðKpnÞ� ! Div0ðX ;ZpÞ ! 0;

where TpðJÞ is the p-adic Tate-module of J and Div0ðX ;ZpÞ denotes the group of functions

f : X ! Zp having the two properties:

(a) For every integer nf 1, the support of f modulo ðpnÞ is finite.

(b)
P
x AX

f ðxÞ ¼ 0.

Let IsomK;1 denote the group of the isomorphy classes of the 1-dimensional ID-modules over

K. There is a natural exact sequence

0! TpðJÞ ! IsomK;1 ! Div0ðX ;ZpÞ=PrinðXÞ ! 0;

where PrinðX Þ is the group of the principal divisors on X.

Proof. For X ¼ P1
C we have an obvious isomorphism K �=C � ! Div0ðX Þ

(i.e., the group of the ordinary divisors on X with degree 0) and isomorphisms
K �=ðKpnÞ� ! Div0ðXÞ=pn Div0ðXÞ. The projective limit of the right hand factors is easily
seen to be the group Div0ðX ;ZpÞ as defined above. Thus the proposition is correct in this
special case.

Matzat and van der Put, Iterative di¤erential equations10

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/27/15 1:42 AM



Suppose now that the genus of X is f1. Then there is an exact sequence
0! K �=C � ! Div0ðXÞ ! J ! 0, where we have identified J with its group of points
JðCÞ. The multiplication by pn between two copies of the above sequence and the exact-

ness of 0! J½pn� ! J !p
n�
J ! 0 induce the exact sequence

0! J½pn� ! K �=ðKpnÞ� ! Div0ðXÞ=pn Div0ðXÞ ! 0:

Since the projective system fJ½pn�g is a system of finite groups, the Mittag-Le¿er condi-
tion is satisfied and we conclude that the projective limit of the above sequences is again
exact. This implies the first part of the proposition. For the second part we observe that
the canonical map of K �=C � to the projective limit of the K �=ðKpnÞ�, combined with the

map from this projective limit to Div0ðX ;ZpÞ is injective. This implies the exactness of the
second sequence. r

Let C;X ;K be as in the proposition 4.2. For any point x A X we denote the comple-
tion of K with respect to the valuation corresponding to x by Kx. The field Kx is isomorphic
to C

�
ðtÞ
�
, where t is some local parameter at x. The field Kx inherites an iterative deriva-

tion from K . The natural map IsomK ;1 ! IsomKx;1, derived from M 7! KxnM, has the
form

IsomK ;1 ! Div0ðX ;ZpÞ=PrinðX Þ ! Zp=ZG IsomKx;1;

where the last arrow is induced by f A Div0ðX ;ZpÞ 7! f ðxÞ A Zp.

We note that for any X , even for P1
C , there are non trivial elements x A IsomK ;1 such

that the image of x in IsomKx;1 is zero for every x A X . An explicit example of this phe-
nomenon is the following:

X ¼ P1
C and sn is a sequence of distinct points in A1

C . The ‘‘divisor’’
D ¼

P
nf0

ðp� 1Þpn½sn� þ ½y� lies in Div0ðX ;ZpÞ. No positive multiple of D is in PrinðX Þ

and its image in IsomKx;1 is 0 for all x. A calculation shows that the iterative di¤erential
equation corresponding to D is qðp

nÞy ¼ ðz� snÞ�p
n

y for all nf 0. The di¤erential Galois
group of this ID-module is Gm;C . For every x A P1

C there is a non trivial solution in Kx.
An explicit way to see this is to consider a ‘‘symbolic’’ solution F ¼

Q
nf0

ðz� snÞp
n

and to
give this expression a meaning in every Kx.

This is in contrast with the situation of complex linear di¤erential equations on P1
C . In

order to stay closer to the complex analytic theory of ordinary di¤erential equations we
will in section 7 introduce an adequate notion of ‘‘regular at a point x A X ’’ for ID-modules
over K.

4.3. Inhomogeneous iterative equations of order one. We consider here ID-
modules M of dimension two, which admit a submodule N of dimension 1 such that both
N and M=N are trivial. In other words we consider inhomogeneous equations of the form
qðnÞy ¼ an with all an A K . (The sequence of elements an satisfies certain relations corre-
sponding to the definition of ID-module.) The di¤erential Galois group is clearly an alge-
braic subgroup of the additive group Ga;C over C. As in the last subsection one finds that
these equations are classified by the cokernel of the natural map K ! lim � K=Kpn

. For the

Matzat and van der Put, Iterative di¤erential equations 11
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field K ¼ C
�
ðzÞ
�
one can make this projective limit somewhat explicit. The elements of

the projective limit can be described as the formal series f ¼
P
n AZ

cnz
n having the prop-

erty that for all kf 0 there is an integer Nk such that the support of f is contained in
pkZW fn A Z j nfNkg. A typical example is f ¼

P
kf0

akz
�pk

. The corresponding iterative

equation is qðp
nÞy ¼

Pn
k¼0
�akz�p

k�pn

for all nf 0. The di¤erential Galois group GHGa;C

of this iterative equation depends on the coe‰cients ak (see lemma 5.2).

Let C be an algebraically closed field of characteristic p > 0, X an irreducible
smooth, projective curve over C with function field K . The field K is provided with an
iterative derivation with field of constants C. In this situation, too, one can make the pro-
jective limit lim � K=Kpn

somewhat explicit. Let O;M and H denote the sheaves of the reg-
ular functions, the rational functions and the principal parts on X . The exact sequence

0! K=C ! HðXÞ ! H 1ðX ;OÞ ! 0

induces exact sequences

0! ker
�
Frobn;H 1ðX ;OÞ

�
! K=Kpn

! HðX Þ=HðX Þp
n

! coker
�
Frobn;H 1ðX ;OÞ

�
! 0:

Let H 1ðX ;OÞ0 denote the generalized eigenspace for the eigenvalue 0 and the Frobenius
action Frob on H 1ðX ;OÞ. Then one finds an exact sequence

0! H 1ðX ;OÞ0 ! lim � K=Kpn ! lim � HðX Þ=HðX Þp
n

! H 1ðX ;OÞ0 ! 0:

As in the last subsection, there are ID-equations (of the type considered here) which
are trivial at each point x A X and are ‘‘globally’’ non trivial. A typical example is given
by X ¼ P1

C , a sequence sn of distinct points in A1
C and

P
nf0

ðz� snÞ�p
n

seen as element

of lim � HðXÞ=HðXÞp
n

. The corresponding iterative di¤erential equation is given by the
formulas:

qðp
nÞy ¼

Pn
k¼0
�ðz� skÞ�p

k�pn

for all nf 0:

The di¤erential Galois group over K is Ga;C and the equation has a solution in Kx for every
x A X .

5. Iterative di¤erential modules and projective systems

As before K denotes a field equipped with an iterative derivation and its field
of constants C is supposed to be algebraically closed of characteristic p > 0. We will
use again the notation K0 ¼ K and for nf 1 one defines Kn ¼ fa A K j qð jÞa ¼ 0 for
all 0 < j < png. Let M be an ID-module over K . The structure of M is determined by

the maps q
ðpnÞ
M : M !M for nf 0. The p th power of q

ð1Þ
M is the zero map. Consider the

ordinary di¤erential module ðM; q0Þ over the di¤erential field K with derivation qð1Þ, given

Matzat and van der Put, Iterative di¤erential equations12
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by q0 ¼ q
ð1Þ
M . Define the K1 vector space M1 by M1 ¼ fm A M j q0m ¼ 0g. Since the p-

curvature is 0, the canonical map KnK1
M1 !M is an isomorphism. Now consider the

ordinary di¤erential module ðM1; q1Þ with q1 ¼ q
ðpÞ
M restricted to M1, over the di¤erential

field K1 with derivation qðpÞ. Again the p-curvature of this di¤erential module is zero.
Put M2 :¼ fm A M1 j q1m ¼ 0g. Then, as before, the canonical map K1 nK2

M2 !M1 is
an isomorphism. More generally, define for nf 1 the space Mn ¼ fm A M j qðp

lÞ
M m ¼ 0

for all l < ng and M0 :¼M. Then Mn is a vector space over Kn and the canonical map
Kn nKnþ1 Mnþ1 !Mn is an isomorphism. We will call fM�g, as above, the projective system
of the iterative di¤erential module.

Conversely, let a finite dimensional K-vector space M be given and a collection of
subsets M ¼M0 IM1 IM2 IM3 I � � � such that:

(a) Each Mn is a vector space over Kn.

(b) The natural maps Kn nKnþ1 Mnþ1 !Mn are isomorphisms.

Then this defines a unique ID-module structure fqðl ÞM g on M by requiring that q
ðl Þ
M is

the zero map on Mn if l < pn. Indeed, one defines q
ðl Þ
M by considering some n with l < pn

and a basis e1; . . . ; ed of Mn over Kn. Any element m A M can uniquely be written as
Pd
i¼1

fiei

with all fi A K . One defines q
ðl Þ
M

Pd
i¼1

fiei :¼
Pd
i¼1
ðqðl ÞfiÞei. A straightforward verification shows

that the definition of q
ðl Þ
M does not depend on the choices made and that fqðl ÞM g is an iterative

di¤erential on M.

In general, we define a projective system fN�; f�g over K to be a sequence of spaces
and maps

N0  
f0

N1  
f1

N2  
f2

N3  � � �

having the properties:

(a) Each Nn is a vector space over Kn of finite dimension and

(b) the maps fn are Knþ1-linear and the canonical Kn-linear maps
Kn nKnþ1 Nnþ1 ! Nn are isomorphisms for nf 0.

One associates to a projective system over K , the iterative di¤erential module M

given by M ¼ N0 and the sequence of subsets Mn :¼ f0 � � � � � fn�1ðNnÞ of M. Clearly Mn

is a vector space over Kn and the canonical maps Kn nKnþ1 Mnþ1 !Mn are isomorphisms.
As above, this defines a unique structure of iterative di¤erential module on M.

A morphism a : fN�; f�g ! fM�;c�g between two projective systems over K is a
sequence of Kn-linear maps an: Nn !Mn, nf 0 such that an � fn ¼ cn � anþ1 for all nf 0.
The collection of all homomorphisms between two projective systems forms a vector space
over C. Further one sees that one can perform on projective systems ‘‘all operations of
linear algebra’’, including tensor products. One concludes the following.

Matzat and van der Put, Iterative di¤erential equations 13
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Proposition 5.1. The Tannakian categories of the iterative di¤erential modules over K

and the projective systems over K are equivalent.

We omit the obvious proof of this proposition. In order to make a projective system
fN�; f�g over K more concrete we choose a C-vector space V of dimension d and identify
each Nn with KnnC V . The maps fn are now elements in GLðKn nVÞ. The iterative dif-
ferential fqðl ÞM g on M ¼ N0 ¼ KnV can explicitly be derived from the data ffng.

The Knþ1-linear map f0 � � � � � fn: Nnþ1 ! N0 ¼M is extended to a K-linear iso-
morphism KnNnþ1 !M, which we will give temporarely the name c. By definition q

ðmÞ
M

is zero on cðNnþ1Þ for me pn. One provides KnNnþ1 ¼ KnC V with the trivial struc-
ture of ID-module fqðmÞV g given by q

ðmÞ
V v ¼ 0 for all v A V and mf 1. Then by con-

struction q
ðmÞ
M c ¼ cq

ðmÞ
V holds for all me pn. Thus q

ðmÞ
M ¼ cq

ðmÞ
V c�1 holds for me pn.

Now we fix a basis e1; . . . ; es of V over C. Then this is also a basis of M ¼ KnC V

over K. As in the definition 3.3, An for nf 0 denotes the matrix of q
ðnÞ
M with respect

to this basis. On all of the spaces Nm ¼ KmnV we have then also fixed a basis, namely
1n e1; . . . ; 1n es. For any linear map t between vector spaces with fixed bases, we

write ½t� for the corresponding matrix. Moreover q
ðmÞ
V B for a matrix B, will mean the

matrix obtained by applying qðmÞ to all its entries. In this way one obtains the for-

mula Am ¼ ½c�qðmÞV ½c�
�1 for me pn. The extension of any fn to a K-linear isomorphism

KnNnþ1 ! KnNn will also be denoted by fn. The formula for the matrix Am can now

be written as Am ¼ ½f0� � � � ½fn�q
ðmÞ
V ð½f0� � � � ½fn�Þ

�1 if me pn. We note that the above for-
mulas show that Am ¼ 0 for all mf 1 if all fn A GLðVÞ.

Example. Take K ¼ CðzÞ and qðl Þ ¼ qðl Þz for all lf 0 and consider a two dimen-
sional space V with basis v1; v2. All maps are given as matrices with respect to this basis.

Let fn have the matrix
1 anz

pn

0 1

� �
with an A C. The matrix Am is equal to

0 bm

0 0

� �
with

bm ¼ �qðmÞða0zþ � � � þ anz
pnÞ if me pn. This iterative di¤erential equation can also be

written as a set of inhomogeneous scalar equations qðp
nÞy ¼ an. The Picard-Vessiot ring

R for this equation can be written as K ½Y �=I , where K ½Y � is given an iterative deriva-
tion, which extends the given one on K , by putting qðp

nÞY ¼ an. Further I is a maximal
iterative ideal in K ½Y �. The corresponding di¤erential Galois group consists of the auto-
morphism Y 7! Y þ c, with c A C, of R such that the ideal I is invariant. In case I ¼ 0,
this group is the additive group Ga;C ¼ C. If I 3 0, then the di¤erential Galois group is
a finite (reduced) subgroup of Ga;C . We continue with this situation. The Picard-Vessiot
field of the equation is then R. Consider the completion C

�
ðz� aÞ

�
of K ¼ CðzÞ with

respect to the point a A CHP1
C . In this field the set of equations has a solution, namely

f :¼
P
nf0

anðz� aÞp
n

. This implies that the field extension KHR is only ramified above

the point y A P1
C . Furthermore f A C

�
ðt� aÞ

�
must be algebraic over CðzÞ.

It can be seen that f cannot be algebraic over CðzÞ if the sequence fang has arbitrary
large ‘‘gaps’’, which means that there are intervals J in N of arbitrary length with an ¼ 0
for n A J. A more precise statement about the algebraicity of f is the following.

Lemma 5.2. f ¼
P
nf0

anz
pn

A Fp½½z�� is algebraic over CðzÞ if and only if the power

series
P
nf0

anT
n represents a rational function.

Matzat and van der Put, Iterative di¤erential equations14
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Proof. Suppose that f is algebraic over CðzÞ. Then there is a non trivial relation
h :¼ b0ðzÞ f þ b1ðzÞ f p þ � � � þ bsðzÞ f p s

A C½z�, where b0ðzÞ; . . . ; bsðzÞ A C½z�. For ng 0 one
has

0 ¼ qðp
nÞ

z h ¼ b0ðzÞan þ b1ðzÞan�1 þ � � � þ bsðzÞan�s:

We choose c A C such that not all biðcÞ are 0. Then we obtain the recurrence relation

0 ¼ b0ðcÞan þ b1ðcÞan�1 þ � � � þ bsðcÞan�s for ng 0:

This proves that
P
nf0

anT
n is a rational function. The converse can be proved as follows.

Let the symbol t stand for the Frobenius operation a 7! ap. Assume
P

anT
n ¼ PðTÞ

QðTÞ with

P ¼
P

pnT
n;Q ¼

P
qnT

n A Fp½T �. Then QðtÞ
P

ant
n ¼ PðtÞ. Apply this formula to the

element z A Fp½½z��. The result is
P

qn f
pn ¼

P
pnz

pn

. This shows that f is algebraic. r

Proposition 5.3. Let V be a finite dimensional vector space over C and

GHGLðVÞ a reduced algebraic subgroup. Consider a projective system fKn nV ; fng such
that fn A GðKnÞHGLðKnnVÞ for all nf 0. Let M be the iterative di¤erential module

associated to the projective system. Then the di¤erential Galois group of M is contained in G.

Proof. The proof that we will give here follows closely 9.2 of [P1]. For any
linear algebraic group H over C, one writes ReprH for the Tannakian category of
the finite dimensional representations of H (over the base field C). Further, VectC
denotes the category of the finite dimensional vector spaces over C. The forgetful functor
o : ReprH ! VectC is the functor which associates to a representation of H on W the
vector space W .

Let M denote the iterative di¤erential module defined by the data of the
proposition. One writes M � for the dual of M and Ma;b for the tensor product
Mn � � �nMnM �n � � �nM � with a factors M and b factors M �. Define ffMgg to
be the full subcategory of the category of all iterative di¤erential modules over K , whose
objects are the finite direct sums of subquotients of various Ma;b. Then ffMgg is a neu-
tral Tannakian category, which means that there is an equivalence ffMgg ! ReprH of
Tannakian categories for some a‰ne group scheme H over C. In fact H is the di¤erential
Galois group of M.

Suppose that we can produce a functor of Tanakian categories ReprG ! ffMgg
such that the composition ReprG ! ffMgg ! ReprH !

o
VectC is the forgetful functor

of ReprG. Then it follows that H is an algebraic subgroup of G.

Let r : G! GLðW Þ be a representation. Then for any commutative C-algebra F one
has an induced homomorphism r : GðFÞ ! GLðF nWÞ. One associates to r the projective
system fKnnW ; rðfnÞg and the corresponding iterative di¤erential module MðrÞ over K.
In this way one obtains a functor F from the Tannakian category ReprG to the category
of all iterative di¤erential modules over K. Let V denote the given representation of G, i.e.,
G is given as an algebraic subgroup of GLðVÞ. One writes V � for the dual representa-
tion and V a;b for the tensor product V n � � �nV nV �n � � �nV � with a factors V and
b factors V �. Clearly FV a;b ¼Ma;b A ffMgg. Let ffVgg denote the full subcategory of
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ReprG whose objects are the finite direct sums of subquotients of various V a;b. Then F
maps ffVgg into the category ffMgg. It is well known that ffVgg is actually equal to
ReprG (see [W]). Thus we have constructed the required functor ReprG ! ffMgg. r

5.1. Frobenius operators and finite groups. Proposition 5.3 will be used to construct
iterative di¤erential modules with G as prescribed di¤erential Galois group. We note that
for a finite group G, the condition fn A GðKnÞ implies fn A GðCÞ. This has as consequence
that the iterative di¤erential module is trivial and the di¤erential Galois group is f1g
(compare with the calculation following proposition 5.1). We will briefly discuss a natural
way to produce iterative di¤erential modules with finite groups as di¤erential Galois group.
In the sequel we will suppose that the field K is provided with an iterative derivation such
that the field of constants C is algebraically closed and Kn :¼ fa A K j qð jÞa ¼ 0 for all
0 < j < png coincides with the field Kpn

.

LetM be a finite dimensional vector space over K . A map F : M !M will be called a
Frobenius operator if F is additive, Fð fmÞ ¼ f pFðmÞ for all f A K and m A M and more-
over the determinant of the matrix of F with respect to some basis ofM over K is non-zero.

Let a Frobenius operator F on M be given. Then one defines M1 ¼ FðMÞ. This
is a vector space over K1. Since the determinant of F (w.r.t. some basis) is non-zero,
the natural map KnK1

M1 !M is an isomorphism. Define Mn ¼ F nðMÞ, then again
Kn�1 nMn !Mn�1 is an isomorphism. Thus the system fMng (with inclusion maps)
forms a projective system and defines an ID-module structure on M.

Proposition 5.4. F denotes a Frobenius operator on a vector space M over K of

dimension d.

(1) The Fp-vector space fm A M jFðmÞ ¼ mg has dimensioned.

(2) The smallest field extension LIK such that the Fp-vector space

fm A LnM jFðmÞ ¼ mg has dimension d is a Galois extension. Let G denote its Galois

group.

(3) Let GHGLd;Fp be a linear algebraic group and suppose that the matrix of F with

respect to some basis of M lies in GðKÞ. Then G is a subgroup of GðFpÞ.

(4) The Picard-Vessiot field and the di¤erential Galois group of the iterative di¤erential

module M are equal to the field L and the group G of (2).

Proof. (1) Let e1; . . . ; es A M be Fp-linear independent elements with FðeiÞ ¼ ei for
all i. By induction on s we will show that the elements are also K-linearly independent.
Suppose that there is some relation between the ei. Then we may assume that this relation
has the form a1e1 þ � � � þ ases ¼ 0 with a1; . . . ; as A K and as ¼ 1. By induction we may
suppose that e1; . . . ; es�1 are linearly independent and therefore the given relation is unique.
Applying F to the identity yields a p

1 e1 þ � � � þ a p
s es ¼ 0, which is either a new relation or a

relation with coe‰cients in Fp.

(2) Let e1; . . . ; ed be a basis of M over K . The set of d additive polynomial equations
x1e1 þ � � � þ xded ¼ x

p
1 Fðe1Þ þ � � � þ x

p
d Fðed Þ in the d variables x1; . . . ; xd has the identity

as Jacobian matrix and defines therefore a finite Galois extension L of K .
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(3) Let A A GðKÞ denote the matrix of F with respect to some basis of M over K.
One considers Lang’s isogeny f : G! G, given by ðxi; jÞ 7! ðx p

i; jÞðxi; jÞ
�1. There is an ele-

ment ðbi; jÞ A GðK sepÞ with f
�
ðbi; jÞ

�
¼ A�1. In fact, the field extension of K defined by this

matrix is L. Indeed, the identity Aðb p
i; jÞ ¼ ðbi; jÞ is a solution of the set of equations of (2).

For any s A G, the element ðsbi; jÞ lies in GðLÞ and also satisfies f
�
ðsbi; jÞ

�
¼ A�1. It fol-

lows that ðsbi; jÞ ¼ CðsÞ�1ðbi; jÞ with CðsÞ A GðFpÞ. Thus GHGðFpÞ.

(4) L denotes the field defined in (2). Let e1; . . . ; ed be a basis of LnM satisfying
FðeiÞ ¼ ei for all i. Then clearly LnM is a trivial ID-module and so the Picard-Vessiot
field of the ID-module M is contained in L. On the other hand, let ~LL denote a Picard-
Vessiot field for the ID-module M. Let e1; . . . ; ed A N :¼ ~LLnM be a basis of elements
with qðnÞei ¼ 0 for all i and all nf 1. Then F mðNÞ ¼ ~LLme1 þ � � � þ ~LLmed for all mf 0. The
intersection of all F mðNÞ is the F -invariant space Ce1 þ � � � þ Ced . Since C is algebraically
closed, the space Ce1 þ � � � þ Ced has a basis ~ee1; . . . ; ~eed with Fð~eeiÞ ¼ ~eei for all i. This implies
that LH ~LL. r

A specialization of proposition 5.4 to the case K ¼ CðzÞ (with the standard iter-
ative di¤erentiation) produces ID-modules over K which have only one singular point,
namely z ¼y, and have di¤erential Galois group GðFpÞ where G is a semi-simple, sim-
ply connected linear algebraic group over Fp. The corresponding Picard-Vessiot extension
LIK ¼ CðzÞ is only ramified above z ¼y. A small variation on proposition 5.4 pro-
duces also di¤erential Galois groups GðFqÞ with G as above. We refer to [S3] and [Gi] for
more details on Nori’s examples.

Corollary 5.5 (Nori). Let G be a linear algebraic group defined over Fp, which is semi-

simple and simply connected. The field K ¼ CðzÞ is provided with the standard iterative dif-

ferentiation. There exists an A A GðKÞ such that the di¤erential Galois group of the iterative

di¤erential module corresponding to A is equal to GðFpÞ.

Examples. (1) G ¼ Gm (the multiplicative group) and A ¼ ðzÞ produce the ðp� 1Þ-
cyclic group GmðFpÞ and the equation x ¼ zxp.

(2) G ¼ Ga (the additive group) and A ¼ 1 z

0 1

� �
produce the p-cyclic group

GaðFpÞ and an Artin Schreier equation xp � x ¼ �z.

(3) G ¼ B, the Borel subgroup of SLð2Þ and A ¼ z�1 1

0 z

� �
leads to the equa-

tion xp2 � ðzp þ z�1Þxp þ x ¼ 0 with group BðFpÞ. Indeed, division of this polynomial by
xðxp�1 � zÞ produces an irreducible factor of degree pðp� 1Þ, which is the order of the
group BðFpÞ.

(4) G ¼ SLð2Þ and A ¼ 0 1

�1 z

� �
produce the group SLð2; FpÞ and the equation is

f ðxÞ ¼ 0 where f ðxÞ ¼ xp2 � zxp þ x. By corollary 5.5, the Galois group G is a subgroup
of SLð2; FpÞ. Since the equation f ðxÞ ¼ 0 is irreducible over FpðzÞ, the order of G is a
multiple of p2 � 1. By specializing z to 2 one finds an element of order p (using Dedekind’s
criterion, see [M-M], I, corollary 9.3). Hence the order of G is a multiple of pðp2 � 1Þ and
G must be SLð2; FpÞ. See also [A2], Thm. 1.2 for this example.
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6. Local iterative di¤erential modules

In this section the field K is C
�
ðzÞ
�
, where C algebraically closed of characteristic p

and provided with the standard iterative di¤erential fqðnÞz g. Our aim is to classify the iter-
ative di¤erential modules over K and to determine all possible di¤erential Galois groups.

We define the operators dðnÞ :¼ znqðnÞ, as element of the skew ring D ¼ K ½qðnÞ; nf 0�.
This skew ring acts faithfully as a ring of operators on K. Using this action one easily
verifies the following relation:

dðnÞdðmÞ ¼
P

nþmfkfmaxðn;mÞ

k!

ðk � nÞ!ðk �mÞ!ðnþm� kÞ! d
ðkÞ:

In particular the dðnÞ commute. In the same way one can verify that ðdðnÞÞp ¼ dðnÞ

holds for all n. The commutative algebra R :¼ C½dðnÞ; nf 0� is rather special. Suppose
that R acts on a finite dimensional vector space V over C. Then each dðnÞ acts semi-simple
because ðdðnÞÞp ¼ dðnÞ holds. Moreover the dðnÞ commute and one concludes that there are
unique distinct p-adic numbers a1; . . . ; ar and a decomposition V ¼ V1 l � � �lVr such

that the action of R on each vector space Vj is given by dðnÞv ¼ aj

n

� �
v for all v A Vj. The

a1; . . . ; ar A Zp will be called the eigenvalues for R on V.

Proposition 6.1. For a A Zp one defines the one dimensional iterative di¤erential

module EðaÞ ¼ Ke by the formulas qðnÞe ¼ a

n

� �
z�ne for all nf 0.

(1) Suppose that the iterative di¤erential module M contains a lattice L over C½½z��,
which is invariant under all dðnÞ. Then M is isomorphic to a direct sum Eða1Þl � � �lEðad Þ.

(2) The di¤erential Galois group G of Eða1Þl � � �lEðad Þ is the subgroup of Gd
m;C

consisting of the elements t ¼ ðt1; . . . ; td Þ satisfying tm1

1 � � � t
md

d ¼ 1 for all ðm1; . . . ;mdÞ A Zd

such that m1a1 þ � � � þmdad A Z.

Proof. (1) We consider the action of the R ¼ C½dðnÞ; nf 0� on the vector space
L=zL. The distinct eigenvalues are, say, a1; . . . ; ar and the direct sum decomposition isL
i

L=zLðaiÞ. One can lift this direct sum decomposition of L=zL to a direct sum decom-

position
L

Li of the C½½z��-module L. The submodule L� :¼ zL1 lL2l � � � is again a
lattice, invariant under all dðnÞ. The action of C½dðnÞ; nf 0� on the vector space L�=zL�

gives rise to new eigenvalues. They are a1 þ 1; a2; . . . ; ar. Of course it is now possible that
a1 þ 1 coincides with some aj. This process of changing the invariant lattice can be con-
tinued until one arrives at a situation where the distinct a1; . . . ; ar do not di¤er by an integer.
In the sequel we will assume that the ai have this property.

Now the vector space L=z2L has a similar direct sum decomposition. The
corresponding p-adic eigenvalues are the ai and the 1þ ai. Indeed, if e is a simultaneous
eigenvector corresponding to the p-adic integer a then ze corresponds to 1þ a. From
our assumption it follows that the canonical map L=z2LðaiÞ ! L=zLðaiÞ is bijective. A
similar statement holds for any L=zdL. Using that C½½z�� and the lattice L are complete
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with respect to the ðzÞ-topology one finds that L has subspaces (linear over C) LðaiÞ which
map bijectively to the L=zLðaiÞ. It follows from this that L is a direct sum of modules

Li :¼ C½½z��nC LðaiÞ. The action of dðnÞ on Li is given by dðnÞe ¼ ai

n

� �
e for all n and

e A LðaiÞ.

(2) The Picard-Vessiot ring for the module Eða1Þl � � �lEðad Þ is

K ½X1;X
�1
1 ; . . . ;Xd ;X

�1
d �=I with dðnÞXj ¼

aj

n

� �
Xj for all nf 0, 1e je d,

and where I is a maximal iterative di¤erential ideal. The ideal J generated by the elements

fXm1

1 � � �X
md

d � zm j for mj A Z with m1a1 þ � � � þmdad ¼ m A Zg

is easily seen to be an iterative di¤erential ideal. A longer, however straightforward
calculation shows that J is in fact already maximal among the iterative di¤erential ideals.
Thus we may take I ¼ J. The di¤erential Galois group consists of the K-algebra auto-
morphisms s of K½X1;X

�1
1 ; . . . ;Xd ;X

�1
d � having the form sXj ¼ cjXj with all cj A C � and

such that the ideal I ¼ J is invariant. r

An iterative di¤erential module M over K will be called regular singular if M con-
tains a lattice which is invariant under all dðnÞ. We will call M regular or trivial if M has
a basis e1; . . . ; ed over K such that qðnÞej ¼ 0 for all j and nf 1. We note that M is trivial
if and only if the di¤erential Galois group of M is f1g.

Corollary 6.2. (1) M is regular singular if and only if its di¤erential Galois group is a

diagonizable group.

(2) The ID-module M is regular if and only if M contains a lattice L over C½½z�� which
is invariant under all qðnÞ.

(3) For a regular M the lattice, invariant under all qðnÞ, is unique.

Proof. (1) If M is regular singular then, according to proposition 6.2, M is a direct
sum of one-dimensional submodules. Thus its di¤erential Galois group is diagonizable. On
the other hand, suppose that the di¤erential Galois group G of M is diagonizable. Then the
action of G on the solution space of M has a diagonal form and therefore M is the direct
sum of one-dimensional submodules. The classification of the one-dimensional ID-modules
(see lemma 4.1) yields that M is regular singular.

(2) Suppose that M is regular ID-module of dimension d. Then

V :¼ fm A M j qðnÞm ¼ 0g

is a vector space over C of dimension d, which contains a basis of M. The lattice
C½½z��nC V HM is clearly invariant under all qðnÞ. Now suppose that a lattice LHM

is invariant under all qðnÞ. This lattice is also invariant under all dðnÞ. Then M is regular
singular and all the attached p-adic numbers (eigenvalues) are 0. The proof of proposition

6.2 implies that L contains a subspace V of dimension d over C such that all the qðnÞ, nf 1
are 0 on V and C½½z��nV ! L is an isomorphism. This proves that M is regular.

(3) According to the proof of (2), any lattice L, which is invariant under all qðnÞ, has
necessarilly the form L ¼ C½½z��nV , where V ¼ fm A M j qðnÞm ¼ 0 for all nf 1g. This
proves the unicity. r
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Proposition 6.3. Every ID-module M over K ¼ C
�
ðzÞ
�
of dimension strictly greater

than 1 has a non trivial submodule.

Proof. We fix a lattice L0 for M. For any nf 1 we define the subset
Ln :¼ fm A L0 j dð jÞm A L0 for all j < pnþ1g. It is easily seen that Ln is itself a lattice. Take
a basis e1; . . . ; ed of M over K such that qð jÞei ¼ 0 for all i and all j < pnþ1. The lattice
Ln :¼ C½½z��e1 þ � � � þ C½½z��ed is clearly invariant under qð jÞ for all j < pnþ1. The lattice
zsLn is then seen to be invariant under dð jÞ for all j < pnþ1. One chooses s such that
zsLnHL0 and zsLn is not contained in zL0. Take an element m A zsLn which does not
lie in zL0. From the invariance of zsLn under all d

ð jÞ with j < pnþ1 it follows that m A Ln.
We conclude that Ln is not contained in zL0. By standard local algebra we conclude
that Ly :¼

T
nf1

Ln is not zero. By definition, Ly consists of the elements x A L0 such that

dð jÞx A L0 for all j. Using the formula for dðnÞdðmÞ one concludes that for any x A Ly

and any mf 1 also dðmÞx A Ly. Therefore KnLyHM is a regular singular submodule
of M. By proposition 6.2, this submodule and also M contains a one-dimensional sub-
module. r

For any group G one denotes by pðGÞ the subgroup generated by all elements
which have order a power of the prime number p. Clearly pðGÞ is a normal subgroup of
G. Moreover G=pðGÞ is the largest factor group of G which has no elements of order p. We
refer to section 7, for more details on pðGÞ and the structure of G=pðGÞ for reduced linear
algebraic groups G.

Corollary 6.4. (1) Every iterative di¤erential module over K ¼ C
�
ðzÞ
�
is a multiple

extension of one-dimensional iterative di¤erential modules.

(2) The di¤erential Galois group G of an iterative di¤erential module over K ¼ C
�
ðzÞ
�

has the properties:

(a) G is a solvable group.

(b) G=pðGÞ is commutative.

(c) G=Go is an extension of a cyclic group of order prime to p by a p-group.

Proof. (1) is an immediate consequence of proposition 6.4.

(2) Let an iterative di¤erential module M of dimension d over K be given. Let V
denote its solution space and GHGLðVÞ its di¤erential Galois group. There exists a
sequence M1 HM2H � � �HMd ¼M of ID-submodules such that the dimension of each
Mj is j. The solution space V has therefore a sequence V1 HV2 H � � �HVd ¼ V of G-
invariant subspaces such that each Vj has dimension j. Therefore G is a subgroup of a
Borel subgroup BHGLðVÞ and G is solvable. Let UHB denote the unipotent radical of
B. Then one easily sees that GXU is equal to pðGÞ. Hence G=pðGÞHB=U is commuta-
tive. Finally, G=Go is the (ordinary) Galois group of a finite Galois extension of K . More-
over any Galois group of a finite Galois extension of K is the di¤erential Galois group of
an iterative di¤erential module over K, according to 4.1. It is well known that a finite group
G is the Galois group of a finite Galois extensions of K if and only if G is an extension of a
cyclic group (of order prime to p) by a p-group. r
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The second part of the corollary suggests that a linear algebraic group satisfying (a),
(b) and (c) can be realized as di¤erential Galois group over K. This will indeed be proved
in theorem 6.6. We start with some useful results on Galois cohomology and cohomology
for linear algebraic groups.

Observations 6.5. The G-torsor Z ¼ SpecðRÞ and the groups H iðG;RÞ.

(1) Let M be an iterative di¤erential module over K with Picard-Vessiot ring R and
di¤erential Galois group G.

As remarked at the end of section 3, Z ¼ SpecðRÞ is a G-torsor over K and
determines an element of H 1

�
GalðK sep=KÞ;GðK sepÞ

�
with K sep the separable algebraic

closure of K. It is well known that for the groups G ¼ Gm, Ga the cohomology set
H 1
�
GalðK sep=KÞ;GðK sepÞ

�
is trivial, i.e., equal to f1g. According to corollary 6.4, the

group Go is solvable. In particular, Go is a multiple extension of groups isomorphic to
Gm or Ga. Consequently H 1

�
GalðK sep=KÞ;GoðK sepÞ

�
¼ f1g. We conclude that for a con-

nected di¤erential Galois group G the Picard-Vessiot ring R is K-isomorphic to KnC C½G�,
where C½G� denotes the coordinate ring of G. This isomorphism is G-equivariant.

In the general case, let Go denote the component of the identity of G. The ring of
invariants ~KK :¼ RGo

is a field, and moreover a finite Galois extension of K with Galois
group G=Go. The iterative di¤erential module ~KKnM has again R as Picard-Vessiot ring
and Go as di¤erential Galois group. Thus R is ~KK-isomorphic to ~KKnC C½Go�. This iso-
morphism is Go-equivariant. It is possible to make the G-action on ~KKnC C½Go� explicit.

(2) Let G be any linear algebraic group over C. A finite dimensional G-module is
a finite dimensional vector space V over C on which G acts via a homomorphism of alge-
braic groups G! GLðVÞ. A general G-module is a vector space V over C with a G-action
such that V is the union of finite dimensional subspaces which are G-modules. An example
of a general G-module is C½G�, the ring of the regular functions on G.

For any G-module V one defines V G to be the subspace of the elements invari-
ant under G. The functor V 7! V G, from G-modules to C-vector spaces, is left-exact. The
derived functors are denoted by V 7! HiðG;VÞ.

Let, as in (1) above, M denote an iterative di¤erential module over K , G its di¤eren-
tial Galois group and R its Picard-Vessiot ring. From the description RG ~KKnC C½Go� and
the well known Go-structure of C½Go�, it follows that R is a Go-module. It is also a G-
module since G=Go is a finite group. We will prove a result which will be used for the
construction of iterative di¤erential modules over K with prescribed di¤erential Galois
group (see theorem 6.6).

Let E be any one-dimensional G-module over C, then the cohomology groups

H iðG;RnC EÞ are 0 for if 1. The same holds if one replaces R by Rs ¼ fa A R j qðpmÞa ¼ 0
for all m < sg.

Proof. It is known that for any linear algebraic group H over C and
any H-module F , the cohomology groups HiðH;F nC C½H�Þ are 0 for if 1 (see
[J], lemma 4.7 on page 59). This implies that HiðGo;RnEÞ ¼ 0 for if 1. Then
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HiðG;RnEÞ ¼ Hi
�
G=Go; ðRnC EÞG

o�
. One observes that ðRnC EÞG

o

is a 1-dimensional
vector space over ~KK ¼ RGo

and has therefore the form ~KKe. The action of s A G=Go satisfies
the formula sð feÞ ¼ sð f ÞsðeÞ. Then the map s 7! aðsÞ A ~KK �, defined by sðeÞ ¼ aðsÞe, is
a 1-cocycle. By Hilbert 90, this 1-cocycle is trivial and we may suppose that sðeÞ ¼ e for
all s A G=Go. The additive form of Hilbert 90 implies that the HiðG=Go; ~KKeÞ ¼ 0 for if 1.
Finally, consider Ms :¼ fm A M j qðpiÞm ¼ 0 for all i < sg as an iterative di¤erential mod-
ule over Ks. It is easily seen that its Picard-Vessiot ring is Rs and that its di¤erential Galois
group is G.

The next theorem refines corollary 6.4. The result can be seen as an analogue
of Turritin’s classification of the (ordinary) di¤erential modules over the di¤erential field
C
�
ðzÞ
�
.

Theorem 6.6. Let the reduced linear algebraic group G satisfy:

(a) G is solvable.

(b) G=pðGÞ is commutative.

(c) G=Go is an extension of a cyclic group of order prime to p by a p-group.

Then there exists an iterative di¤erential module over K ¼ C
�
ðzÞ
�
with di¤erential

Galois group isomorphic to G.

Remarks. One may ask a more precise question namely, given a linear algebraic
group G satisfying the above properties (a), (b) and (c) and a representation V of G, i.e., a
finite dimensional vector space V over C and a morphism of algebraic groups G! GLðVÞ,
does there exist an iterative di¤erential module M over K such that the action of the dif-
ferential Galois group on the solution space is isomorphic to the representation V of G?

Suppose that this question has a positive answer for a single faithful
representation W of G (i.e., G! GLðWÞ is injective). Let M be the correspond-
ing iterative di¤erential module. It is known (see [W], section 3.5) that any represen-
tation V of G can be obtained as a direct sum of subquotients of representations
W n � � �nW nW �n � � �nW �. Then the Tannakian approach produces an iterative
di¤erential module N, which is a similar direct sum of subquotients of the iterative dif-
ferential modules Mn � � �nMnM �n � � �nM �, such that the action of G on its solu-
tion space is isomorphic to the given representation V . Thus the more precise question
has a positive answer if the original question has a positive answer. Now we start the
proof of theorem 6.6.

Proof. (1) Consider a reduced linear algebraic group G, satisfying (a), (b) and (c). If
Go happens to be f1g, then G is a finite group, occurs as a Galois group of a finite Galois
extension of K and is, according to subsection 4.1, also a di¤erential Galois group.

Suppose now that Go is a torus. The p-group pðGÞ is a normal subgroup which
maps bijectively to pðG=GoÞ. By assumption (b) one has that G=pðGÞ is commutative and
is, according to (c), equal to Go � Cm where Cm denotes a cyclic group of order m (not
divisible by p). The group Cm is the image of a cyclic group of order m in G. Thus G is the
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semi-direct product of the finite normal p-group pðGÞ and Go � Cm. The action (by con-
jugation) of Go on pðGÞ is trivial since any Go-orbit (for the conjugation) is connected.
Thus G is isomorphic to the product of Go and the finite group G=Go. Both groups are
di¤erential Galois groups (see proposition 6.1). Then this product is also a di¤erential
Galois group.

Suppose now that Go is not a torus. Define a sequence of connected normal sub-
groups H1 IH2 I � � � of G by H1 is the unipotent radical of Go and for if 1 the group
Hiþ1 :¼ ½H1;Hi�, i.e., the group generated by fghg�1h�1 j g A H1; h A Hig. Let sf 1 be
such that Hs 3 1 and Hsþ1 ¼ 1. Then Hs is a connected commutative unipotent group and
thus isomorphic to Gd

a for some df 1. The group G acts on Hs by conjugation. This action
is trivial for H1 and we have to study the action of the group G1 :¼ G=H1 on Hs. As
we have seen above the group G1 is a product E �T, where E is the finite group G=Go and
T is the torus Go=H1. Let Hs have the coordinate ring C½x1; . . . ; xd � and the comultipli-
cation given by xi 7! xi n 1þ 1n xi for all i. The action of E on C½x1; . . . ; xd � respects the
comultiplication and therefore the ring of invariants C½x1; . . . ; xd �E is the coordinate ring
of a connected commutative unipotent group. Therefore the quotient Hs=E exists and is
isomorphic to the algebraic group Gd

a . The torus T acts on Hs=EGGd
a and it can be seen

that there exists a subgroup N1 HHs=E, isomorphic to Ga and invariant under the action
of T. We will give an explicit proof of this.

Let A :¼ C½y1; . . . ; yd � denote the coordinate ring of Hs=E and let the comul-
tiplication m be given by yi 7! yi n 1þ 1n yi. The character group of T is denoted
by X ðTÞ. The action of T on Hs=E translates into a direct sum decomposition A ¼

L
w

Aw,

taken over all w A XðTÞ. The action of T respects the comultiplication. This yields
that m maps Aw into the direct sum

L
w1þw2¼w

Aw1 nAw2 . Write each yi as the finite sum

yi ¼
P
w

yiðwÞ with yiðwÞ A Aw. One finds that m
�
yiðwÞ

�
¼ yiðwÞn 1þ 1n yiðwÞ. Let S

denote a finite set of characters such that all yiðwÞ are 0 for w B S. Consider the free
polynomial ring B ¼ C½fZiðwÞgi¼1;...;d;w AS� and define the comultiplication B! BnB

by ZiðwÞ 7! ZiðwÞn 1þ 1nZiðwÞ for all ZiðwÞ. Then SpecðBÞ is the direct sum of the

d �KS additive groups Mi;w :¼ Spec
�
C½ZiðwÞ�

�
. The action of T on SpecðBÞ is induced

by an action of TðCÞ on the C-algebra B. The latter is defined by t � ZiðwÞ ¼ wðtÞZiðwÞ
for all t A TðCÞ and all i; w. In particular SpecðBÞ is the direct sum of the T-invariant
subgroups Mi;w. Consider now the surjective C-algebra homomorphism B! A which
sends each ZiðwÞ to yiðwÞ. This morphism respects the comultiplication and the T-action.
There results a closed, T-equivariant immersion Hs=EH

L
Mi;w. One considers a min-

imal subset T of fði; wÞ j i ¼ 1; . . . ; d; w A Sg such that N0 :¼ ðHs=EÞX
L
ði;wÞ AT

Mi;w is an

infinite group. Clearly N0 has dimension 1 and is T-invariant. Then N1 :¼No
0 is iso-

morphic to Ga and is T-invariant.

The preimage N2 HHs of N1 has dimension 1 and is invariant under the action of G
on Hs. The same holds for N :¼No

2 . The latter group is clearly isomorphic to Ga. Thus
we have proved that G contains a normal subgroup N isomorphic to Ga. In the remaining
part of the proof we will show that G is a di¤erential Galois group over K if the group
G=N is a di¤erential Galois group over K . By induction (on the dimension of the group G)
the theorem follows.
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(2) Let a linear algebraic group G and a one dimensional G-module E be given. One
identifies E with the linear algebraic group Ga;C and considers exact sequences of linear
algebraic groups 1! E ! ~GG! G! 1 such that the action by conjugation of G on E is
the given G-module structure on E. There is a regular function on ~GG which restricts to the
identity on E. Thus the exact sequence has a section which is a morphism of algebraic
varieties over C. Using this section, the group law on ~GG can be expressed by a 2-cocycle. In
fact, the isomorphy classes of these exact sequences are classified by the cohomology group
H 2ðG;EÞ. Suppose that G can be realized as the di¤erential Galois group of some iterative
di¤erential module over K. Then we want to show that any ~GG as above can also be realized.

Let M be an iterative di¤erential module over K which realizes G and let R denote its
Picard-Vessiot ring and L the field of fractions of R. Consider an inhomogeneous iterative
di¤erential equation qðp

nÞy ¼ an, nf 0 over L with di¤erential Galois group Ga;C . The
inhomogeneous equation is given by some element x A L :¼ lim � L=Ls which is unique up

to an element in L. The group G acts on L;L and L=L. Let x denote the image of x in
L=L. We require that the G action on Cx is isomorphic to the G-module E �, the dual of E.

First we observe that (under this hypothesis) any s A G extends to a K-linear di¤er-
ential automorphism ~ss of LðxÞ. It su‰ces to define h :¼ ~ssx. By construction qðp

nÞx ¼ an for
all nf 0. The element h should satisfy qðp

nÞh ¼ sðanÞ for all nf 0. It is given that sx ¼ cx

for some c A C � depending on s. Thus sðxÞ ¼ cxþ f for certain f A L and h ¼ cxþ f has
the required property. For the special x’s that will be considered, we will show that LðxÞ is
the Picard-Vessiot field of some iterative di¤erential equation over K. Let Gx be the group
of all the K-linear di¤erential automorphisms of LðxÞ. By construction there is an exact
sequence 1! E ! Gx ! G! 1 and so x determines a 2-cocycle and its class c2ðxÞ in the
cohomology group H 2ðG;EÞ. In the sequel we will make c2ðxÞ more or less explicit and
prove that any element in this cohomology group is a c2ðxÞ.

The field L with its natural G-action is not a G-module because for a general a A L the
C-vector space generated by the fgðaÞ j g A Gg is not finite dimensional. The Picard-Vessiot
ring RHL is a G-module and has trivial G-cohomology according to 6.5. The same holds
for Rs ¼ fa A R j qðpnÞa ¼ 0 for n < sg. The projective limit lim � R=Rs has a natural G-
action. It is not a G-module since the G-orbit of an element need not be contained in a
finite dimensional C-vector space. We will replace lim � R=Rs by a subspace R, which is

actually a G-module. For this purpose we consider finite dimensional ~KK-linear subspaces
W HR which are invariant under the action of G and under all qðp

nÞ. From the form of
the Picard-Vessiot ring one sees that R is a filtered countable union of such spacesW . ToW

one associates W ¼ lim � W=Ws. This is a G-invariant subspace of lim � R=Rs and also a G-
module. Then R will denote the union of all W. Our aim is to show that HiðG;RnEÞ ¼ 0
for all if 1 and every 1-dimensional G-module E.

First we consider the Go-structure of R. The Go-modules R and ~KKnC C½Go�
are isomorphic. One deduces from this that R is isomorphic to a Go-module of the
form T nC C½Go�, where T is some vector space over C. The conclusion is that
HiðGo;RnEÞ ¼ 0 for all if 1 and therefore HiðG;RnEÞGHi

�
G=Go; ðRnEÞG

o�
for

all if 0. Now we have to study ðRnEÞG
o

in some detail.

By construction lim �
~KK= ~KKsHRH lim � R=Rs. Using observation 6.5, one finds that

the set of the Go-invariants of the last Go-module is lim �
~KK= ~KKs. Therefore R

Go ¼ lim �
~KK= ~KKs.
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Using that for all 0e s < t the G=Go-module ~KKs= ~KKt has trivial cohomology, one finds
that also lim �

~KK= ~KKs has trivial cohomology and consequently HiðG;RÞ ¼ 0 for if 1. A
slight variation of the above reasoning shows that also HiðG;RnEÞ ¼ 0 for if 1.

Consider an element x A R, with image x in R=R, such that:

(i) The elements fx pn

j nf 0g are linearly independent over C (in order to obtain a
transcendental extension).

(ii) Cx is invariant under the action of G.

We claim that the corresponding extension LðxÞIK is a Picard-Vessiot
extension. The collection sðxÞ � cx, with s A G and c A C � such that sðxÞ ¼ cx, lies in a
finite dimensional C-vector subspace of R=C. The inhomogeneous equation attached to x
is qðp

nÞy ¼ an, nf 0 with all an A R. For any s A G one considers the transformed equation
qðp

nÞy ¼ sðanÞ, nf 0. The set of all these equations forms a finite dimensional C-vector
space of equations. Let N be the corresponding iterative di¤erential module over L. Then

G acts on N. This action commutes with all qðp
mÞ and moreover sð fnÞ ¼ sð f ÞsðnÞ for all

f A L and n A N. The K-vector space NG is an iterative di¤erential module over K such
that LnK NG is isomorphic to N. Let M denote, as before, the iterative di¤erential module
over K with Picard-Vessiot field L. Then one finds that the Picard-Vessiot field of MlNG

is LðxÞ.

One considers the exact sequence of G-modules 0! R=C ! R! Q! 0, which
defines the G-module Q. The exact sequence

0! R=CnE ! RnE ! QnE ! 0

induces a surjective map H 0ðG;QnEÞ ! H 1ðG;R=CnEÞ. The exact sequence of
G-modules 0! E ! RnE ! R=CnE ! 0 induces a surjective map

H 1ðG;R=CnEÞ ! H 2ðG;EÞ:

In total we have found a surjective map H 0ðG;QnEÞ ! H 2ðG;EÞ. An element on
the left hand side can be interpreted as an element x A RHL such that the G-module
CxHL=L is isomorphic to E �. The kernel of the map H 0ðG;QnEÞ ! H 2ðG;EÞ is very
large. After adding to x a suitable element in this kernel, one obtains a x such that the ele-

ments x; x
p
; x

p2

; . . . are linearly independent over C. Using the explicit interpretation of
the cohomology groups and the maps between them, one finds that its image in H 2ðG;EÞ
coincides with the 2-cocycle c2ðxÞ. This ends the proof of part (2) and completes the proof
of the theorem. r

7. Global iterative di¤erential modules

In this section X is an irreducible projective smooth curve over C and K denotes the
function field of X . The field K is provided with an iterative derivation such that qð1Þ is not
trivial. The theme of this section is the study of the iterative di¤erential modules over K and
their di¤erential Galois groups.
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We start with the following observations. A linear di¤erential equation of order d on
the curve X and with poles in the points x1; . . . ; xs with order n1; . . . ; ns can be described by
a connection

‘ : M! WX ðn1½x1� þ � � � þ ns½xs�ÞnM;

where M is a vector bundle on X of rank d, WX is the sheaf of holomorphic di¤erential
forms on X and WX ðn1½x1� þ � � � þ ns½xs�Þ is the sheaf of the di¤erential forms on X with
divisor greater than or equal to �ðn1½x1� þ � � � þ ns½xs�Þ. Further ‘ is required to satisfy the
usual rules. In particular the connection is regular outside the set fx1; . . . ; xsg. This natural
definition of ‘‘regular’’ for a di¤erential equation at a point or on some open a‰ne subset
of X does not carry over to iterative di¤erential modules over K. Indeed, there is no uni-
versal iterative di¤erential available and thus no equivalent for the sheaf WX . We will use
another method to give a reasonable definition of the regularity at a point x A X for an
iterative di¤erential module over K .

An iterative di¤erential module M over K is, according to proposition 5.1, equivalent
to a projective system of subspaces fMng. Each Mn is a vector space over Kn and the
canonical maps Kn�1 nMn !Mn�1 are isomorphisms. In our special situation the field Kn

is equal to Kpn

and in particular does not depend on the chosen iterative derivation on K

provided that qð1Þ3 0. For any other iterative derivation f~qqðnÞg on K with ~qqð1Þ3 0 we can
use the above projective system fMng to define a structure of ID-module on M with respect
to new iterative derivation f~qqðnÞg on K . This change does not e¤ect solution spaces and the
di¤erential Galois group of M.

For any point x A X we can consider a local parameter t at x. The field exten-
sion CðtÞHK is finite and separable and the unique iterative derivation on K with

qðnÞtm ¼ m

n

� �
tm�n for all n;mf 0 is denoted by fqðnÞt g. We note that the local ring Ox

at x is invariant under all q
ðnÞ
t . The same holds for the coordinate ring OðUÞ of a suitable

a‰ne neighbourhood U of the point x. We can now give the following definition:

Let M be an ID-module over K and let x be a point of X . One considers a
local parameter t at x, the iterative derivation fqðnÞt g on K and the corresponding struc-
ture fqðnÞM; tg on M. Then x is called a regular point of M if there is an open a‰ne subset

U containing x and an OðUÞ-lattice NHM (i.e., OðUÞ is the coordinate ring of U and
KnOðUÞN !M is an isomorphism) which is invariant under all q

ðnÞ
M; t.

It can be seen that this definition is independent of the choice of t. We note further
that this property is stronger than the statement that KxnM is a regular ID-module over
Kx (where Kx denotes the completion of the function field K at the place x). Indeed, in
section 4.2 we have given examples concerning this statement.

Let M be an iterative di¤erential module over CðzÞ which is regular outside
S ¼ fa; . . . ; ar;yg. Since z is everywhere on Y :¼ P1

CnS a local parameter, there are open
a‰ne sets U1; . . . ;Us with union Y and invariant OðUiÞ-lattices Li for i ¼ 1; . . . ; s and
w.r.t. the iterative derivation fqðnÞz g on CðzÞ. Above the intersection Ui XUj we find by
localization two invariant OðUi XUjÞ-lattices. From the unicity of corollary 6.2, part (3),
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we conclude that those two lattices coincide. Thus the lattices Li glue to an invariant OðY Þ-
lattice L for M.

The following theorem extends proposition 4.2.

Theorem 7.1. Let X be an irreducible smooth projective curve over C with

function field K and J its Jacobian variety. SHX will be a finite set with cardinality

rþ 1f 0. Let IsomX ;S;1 denote the subgroup of IsomK;1 consisting of the (isomorphy classes

of ) one dimensional iterative di¤erential modules over K which are regular outside S. Let
Div0ðX ;S;ZpÞ denote the subgroup of Div0ðX ;ZpÞ consisting of the elements D which have

finite support and such that DðxÞ A Z for all x A XnS.

(1) There exists an exact sequence

0! TpðJÞ ! IsomX ;S;1 ! Div0ðX ;S;ZpÞ=PrinðX Þ ! 0:

(2) For any integer n > 0, not divisible by p, the elements of IsomX ;S;1 with order

divisible by n form a group isomorphic to ðZ=nZÞc with c ¼ 2gþ r if rf 0 and c ¼ 2g for

r ¼ �1.

(3) The group IsomX ;S;1 has no elements of infinite order precisely in the following

cases:

(a) g > 0, re 0, TpðJÞ ¼ 0 and C is the algebraic closure of Fp.

(b) g ¼ 0 and re 0.

(4) Suppose that IsomX ;S;1 contains an element of infinite order, then the dimension of

the Q-vector space QnZ IsomX ;S;1 is infinite.

Proof. (1) Let M be a one-dimensional ID-module over K , given by the projective
system fMng. Choose a point x A XnS, a local parameter t at x, a small enough open U

containing x and a basis feg for M over K . The iterative derivation on K is taken to be

fqðnÞt g. We will abbreviate q
ðnÞ
t ð f Þ for f A K by f ðnÞ. The corresponding ID-structure on M

is denoted fqðnÞg. We want to investigate the invariance of OðUÞe under all qðnÞ. Write

Mn¼Kn fne for certain elements fn A K �. From qð1Þð f1eÞ ¼ 0 it follows that qð1Þe¼� f ð1Þ

f
e.

The coe‰cient � f ð1Þ

f
belongs to OðUÞ if and only if the restriction of the divisor of f to

U is a multiple of p. More generally, �qðpnÞe ¼
P

aþb¼pn;a>0

f
ðaÞ
n

fn
qðbÞe. One concludes that

OðUÞe is invariant under all qðkÞ if and only if for every nf 1 the restriction of the divi-
sor of fn to U is a multiple of pn. Let De A Div0ðX ;ZpÞ denote the projective limit of the
divisors of the fn modulo pn. Then the invariance of the lattice OðUÞe by all qðnÞ is equi-
valent to the support of De lies in XnU .

A change of the basis element of M, changes De by a principal divisor. The above
and the proposition 4.2 prove now (1).
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(2) The p-adic Tate module TpðJÞ is isomorphic to Z s
p with 0e se g and has

no elements of finite order. The other component Div0ðX ;S;ZpÞ=PrinðXÞ of IsomX ;S;1 is
equal to the Jacobian variety J of X for r ¼ �1; 0. For r > 0 the considered there is an
exact sequence

0! J ! Div0ðX ;S;ZpÞ=PrinðXÞ ! ðZpÞr ! 0:

Part (2) of the theorem now follows.

(3) and (4) follow from the following observation: If the field C is the algebraic
closure of Fp, then all the elements of J (or better of JðCÞ) have finite order. For an alge-
braically closed field CI Fp which contains transcendental elements over Fp the group
JðCÞ is large and in particular Qn JðCÞ has an infinite dimension over Q. r

In order to state our conjecture we will use the following notion. For any group G, let
pðGÞ denote the subgroup generated by all elements which have as order a power of the
prime p. Clearly pðGÞ is a normal subgroup and G=pðGÞ is the largest factor group which
does no have elements with order p. Consider a linear algebraic group G.

We claim that pðGÞ is an algebraic subgroup of G and that the quotient H :¼ G=pðGÞ
satisfies: Ho is either 1 or a torus and H=Ho is a finite group whose order is not divisible

by p.

Every unipotent element of G has order a power of p. In particular, pðGÞ contains
the unipotent radical RuðGÞ of G. After dividing by the unipotent radical we may suppose
that G is reductive. Further it su‰ces to consider the case where G is connected. By [Sp],
corollary 8.1.6, G ¼ RðGÞ � ½G;G� where RðGÞ is a central torus and the commutator sub-
group ½G;G� of G is a semi-simple algebraic group. By [Sp], theorem 8.1.5, the latter group
is generated by unipotent elements and lies therefore in pðGÞ. The central torus RðGÞ has
no elements of order p and we conclude pðGÞ ¼ ½G;G� and G=pðGÞ is an image of the
central torus, hence either 1 or a torus.

Conjecture. Let g denote the genus of X and let SHX be a finite subset with cardi-

nality rþ 1f 1. A linear algebraic group G can be realized for the pair ðX ;SÞ, i.e., is the
di¤erential Galois group of an iterative di¤erential module over K which is regular outside S,
if and only if the group H :¼ G=pðGÞ can be realized for the pair ðX ;SÞ.

Remarks. (1) The implication ) in the conjecture follows from the Tannakian
approach to iterative di¤erential modules. Indeed, this point of view shows that if a group
G occurs as a di¤erential Galois group for an iterative di¤erential module which is regular
outside S, then the same holds for any image of G.

(2) If one specializes the conjecture to the case of finite groups, then one obtains the
well known conjectures of Abhyankar, proved by M. Raynaud and D. Harbater (see [A],
[R], [H1], [H2]).

(3) The complex analogue of the above conjecture, is a theorem of J.-P. Ramis. In
this analogue the expression pðGÞ is replaced by LðGÞ, which is the subgroup generated by
all subtori of G. See for an exposition of this work [Ra1], [Ra2], [P1].
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(4) In the sequel we will investigate when a linear algebraic group H, which has
no elements of order p, can be realized as a di¤erential Galois group for the pair ðX ;SÞ.
Further we will give a complete answer to the question which connected linear algebraic
group G can be realized as a di¤erential Galois group for a pair ðX ;SÞ with non-empty S.

Theorem 7.2. The pair ðX ;SÞ represents a smooth, irreducible, projective algebraic

curve over C of genus g and a finite subset of cardinality rþ 1f 1. Let H be a linear alge-

braic group which has no elements of order p.

(1) If H is finite then H is realizable if and only if H can be generated by e2gþ r

elements.

(2) If H is connected then H is realizable if and only if IsomX ;S;1 contains an element

of infinite order.

(3) Suppose 13Ho 3H and H commutative. Then H is realizable if and only if

IsomX ;S;1 contains an element of infinite order and H=Ho can be generated by e2gþ r

elements.

(4) Suppose that 13Ho 3H and that H is not commutative. Let a denote the mini-

mum number of generators of H=Ho. If H is realizable then ae 2gþ r. If H is realizable

and a ¼ 1 (i.e., H=Ho is cyclic), then 2e 2gþ r.

Proof. We start with some observations.

(i) The finite group H=Ho is again the di¤erential Galois group of some iterative
di¤erential modules M over K which is regular outside S. The Picard-Vessiot extension
LIK for M is a finite Galois extension with group H=Ho and is unramified outside S.
According to Grothendieck’s work on étale coverings (see [G]), the groups H=Ho are
characterized as the groups having no elements of order p and generated by at most 2gþ r

elements.

(ii) Consider the case 2gþ r ¼ 1, i.e., g ¼ 0 and r ¼ 1 and an ID-module M such
that its di¤erential Galois group H has no elements of order p. We may suppose that the
a‰ne curve XnS is A1

Cnf0g. By assumption the ID-module M admits a lattice L over
C½z; z�1�, which is invariant under all qðnÞ. We claim that the point 0 is a regular singular
point. Indeed, the di¤erential Galois group ~HH of the ID-module C

�
ðzÞ
�
nM over C

�
ðzÞ
�

is a subgroup of H and has therefore no elements of order p. According to corollary 6.4,
~HH is also a solvable group. Since it has no elements of order p, the group ~HH contains no
unipotent elements3 1 and the group ~HH is diagonalizable. By corollary 6.2, C

�
ðzÞ
�
nM

is regular singular and there are lattices in C
�
ðzÞ
�
nM over C½½z��, invariant under all dðnÞ.

The same holds for the point y. For both z ¼ 0 and z ¼y one has some freedom in the
choice of the lattices, invariant under all dðnÞ. Using this freedom one concludes that there
exists a free vector bundle M on P1

C such that MðP1
Cnf0;ygÞ ¼ L and the completions

M̂M0, M̂My are lattices, invariant under all dðnÞ. Let V denote the vector space of the global
sections of M. Then clearly M ¼ CðzÞnV and V is invariant under all dðnÞ. The algebra
R ¼ C½dðnÞ, nf 0�, introduced in section 6, acts on V . There correspond eigenspaces
V1; . . . ;Vr and eigenvalues a1; . . . ; ar A Zp for this action of R on V . The di¤erential Galois
group H of M can be identified with the group of the automorphisms of V consisting of
the elements h such that:
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(a) The restriction of h to each Vi is multiplication by some ti A C �.

(b) For every tuple ðn1; . . . ; nrÞ A Zr with n1a1 þ � � � þ nrar A Z one has tn11 � � � tnrr ¼ 1.

We conclude that H can be any commutative group such that Ho is a torus and
H=Ho is cyclic with order not divisible by p.

(iii) We consider the case g ¼ r ¼ 0 and an ID-module M with a di¤erential Galois
group H which has no elements of order p. This is a special case of (ii) where now the
point z ¼ 0 is regular. It follows that all the ai are in Z and therefore H ¼ f1g.

Now we have all the ingredients for the proof, namely:

(1) follows from observation (i). (2) follows from part (4) of theorem 7.1. (3) fol-
lows from part (2) and part (4) of theorem 7.1. (4) follows from observations (i), (ii) and
(iii). r

Now we start the proof of the other implication of the conjectures for connected
groups G and g ¼ 0. Define UðGÞ to be the subgroup of G generated by all its connected
unipotent subgroups. The group UðGÞ is a connected normal algebraic subgroup of G and
the factor group G=UðGÞ is either trivial or a torus. (See [Sp].) Clearly UðGÞH pðGÞ and
since the factor group has no elements of order p we have UðGÞ ¼ pðGÞ.

Theorem 7.3. Every connected linear algebraic group GHGLðVÞ, with V a finite

dimensional vector space over C, can be realised as a di¤erential Galois group of an iterative

di¤erential module M over CðzÞ such that the action of G on its solution space is isomorphic

to the given representation of G on V. Moreover:

(1) If the group G is generated by its connected unipotent subgroups (or equivalently
G=pðGÞ ¼ f1g), then M can be chosen with only one singular point.

(2) In the other case (i.e., G=pðGÞ is a non-trivial torus and hence as algebraic group

generated by one element) M can be chosen with two singular points.

The following example illustrates the rather involved proof. We take G ¼ SLð2;CÞ
and we use proposition 5.3 in order to produce an iterative di¤erential module M over CðzÞ
which is regular outside z ¼y and has di¤erential Galois group SLð2;CÞ. This module is
given by a sequence of matrices fn A SLð2;C½zpn �Þ which are supposed to satisfy:

(a) fn is either 1 or
1 zp

n

0 1

� �
or

1 0

zp
n

1

� �
.

(b) The sequence n1 < n2 < n3 < � � � of elements with fn 3 1 has ‘‘arbitrary large
gaps’’, say defined by limðniþ1 � niÞ ¼y.

(c) For every integer Nf 0, there are infinitely many nfN with fn 3 1 and fn
upper triangular and also infinitely many nfN such that fn3 1 is lower triangular.
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We claim that the di¤erential Galois group of M is SLð2;CÞ. We will write V ¼ C 2

and describe a canonical way to identify the solution space of M with V . The C½z�-lattice
C½z�nV ¼M is embedded into the C½½z��-lattice M0 :¼ C½½z��nV HC

�
ðzÞ
�
nCðzÞM.

The ID-module C
�
ðzÞ
�
nM is regular and has a solution space ~VV HM0. The map

~VV !M0 !M0=zM0 GV produces this canonical identification. Here the expression
‘‘canonical’’ means that the construction respects ‘‘all constructions of linear algebra’’.

According to proposition 5.3, the di¤erential Galois group is a subgroup H of
SLð2;CÞ. Let us first assume that H leaves a line in the solution space of M invariant.
This implies that M contains an ID-submodule NHM of dimension 1. Write fNng for the
projective system induced by N. Each Nn HKn nV ¼Mn is a vector of dimension 1 over
Kn ¼ CðzpnÞ and is given a basis element qn ¼ ðan; bnÞ A ðC½zp

n �Þ2 such that the g.c.d. of
the two polynomials an and bn is 1. The element qn is unique up to a constant. Since
fnNnþ1 HNn, one has fnqnþ1 ¼ uqn for some u A K �n . The two coordinates of fnqnþ1 have
again g.c.d. 1 and we conclude that u A C �.

The degree of qn is defined as the maximum of the degrees of an and bn w.r.t. the
variable z. Thus the degree of qn is dn p

n for some integer dn f 0. From fnqnþ1 ¼ uqn
and the form of the fn’s one concludes that dn p

n f dnþ1p
nþ1. This is only possible if all

dn are 0 for all nfN and some integer N. Therefore qn A V for nfN. Suppose that fn,

with n > N, has the form
1 0

zp
n

1

� �
then qnþ1 ¼ cð0; 1Þ with c A C � and qn ¼ qnþ1. If one

supposes that fn has the form
1 zp

n

0 1

� �
then qnþ1 ¼ cð1; 0Þ with c A C � and qn ¼ qnþ1.

Condition (c) yields a contradiction.

Now we suppose that the di¤erential Galois group H is some proper subgroup
of SLð2;CÞ. There is a symmetric power W :¼ symdðVÞ and a line LHW such that L
is invariant under H and not invariant under SLð2;CÞ. With this symmetric power one
associates ID-module symdðMÞ, which is the d th symmetric power of M and the projec-
tive system fcng with cn :¼ symdðfnÞ A GLðC½zpn �nWÞ. We note that the degree of the
coe‰cients of the matrix cn is bounded by dpn. The H-invariant line L in symdðVÞ implies
the existence of a one-dimensional ID-submodule D of symdðMÞ. This D is given by a
projective system fDng and each Dn is given a generator qn A C½zpn �nW such that the
g.c.d. of its coordinates with respect to some basis of W is 1. The degree of qn is the max-
imum of the degrees of those coordinates of qn with respect to the variable z. Thus the
degree of qn is dn p

n for some integer dn f 0. As before, one has cnqnþ1 ¼ uqn with u A C �.
Further dnqnf dnþ1qnþ1 holds for su‰ciently large n, since the condition on the gaps does
not allow for cancellation of the terms with highest degrees. One concludes that dn ¼ 0 and
thus qn A W for large enough n. Moreover qn must be an eigenvector for the eigenvalue 1
for cn and n large. We draw the conclusion that qn ¼ w A W and Dn ¼ Knw for nfN.
Clearly L ¼ Cw. The algebraic subgroup of SLð2;CÞ generated by fnð1Þ with nfN is
equal to SLð2;CÞ. From cnðwÞ ¼ w for nfN it follows that L is also invariant under the
action of SLð2;CÞ on W . This contradicts the hypothesis concerning L.

The idea for the construction of M (in the general case) is again proposition 5.3, i.e.,
M is given by a projective system fKn nV ; fng. The fn’s have to be chosen carefully in
order to assure that the di¤erential Galois group of M is not a proper subgroup of G. In
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case G is generated by its connected unipotent subgroups we define the ring R as C½z� and
in the other case we take for R the ring C½z; z�1�. Put Rn ¼ Rpn

.

Lemma 7.4. Let the connected GHGLðVÞ be given and let R be either C½z� or
C½z; z�1�. Suppose that the elements fn A GðRnÞ satisfy:

(a) fnð1Þ ¼ 1 A G.

(b) For any integer Nf 0 the group G is generated as an algebraic group by the

images of the maps fn: A
1
C or A1

Cnf0g ! G with nfN.

(c) The ‘‘degrees’’ of all fn A GLðRn nVÞ in the variable z p
n

are bounded by some

integer B.

(d) Let n0 < n1 < n2 < � � � denote the n A N such that fn 3 1. We require that

limðniþ1 � niÞ ¼y.

Then the di¤erential Galois group of the corresponding modular di¤erential module

M ¼ KnV is equal to G and its action on the solution space of M coincides with the given

action of G on V.

First we explain the notion of ‘‘degree’’ used in part (c) of the lemma. Any
f A C½z�nV can be written as

P
fnz

n with the fn A V . The degree of f will be

maxfn j fn 3 0g. Any f A C½z; z�1�nV ; f 3 0 can be written as
Pn1
n¼n0

fnz
n with fn A V and

fn0 3 03 fn1 . The degree of f is defined as n1 � n0. Further fn induces a map of V into
Rn nV .

The degree of fn (w.r.t. zp
n

) is defined as the maximum of the degrees of the fnðvÞ
with v A V (w.r.t. zp

n

).

Proof. (1) We consider the case R ¼ C½z� and start by proving that any one
dimensional ID-submodule NHM has the form KnL, where LHV is an G-invariant
one dimensional subspace.

The ID-submodule N gives rise to a sequence of subspaces Nn HKn nV of dimen-
sion 1 over Kn, such that fnNnþ1 HNn for all nf 0. The space Nn is given a generator
qn A C½zpn �nV such that the g.c.d. of the coordinates of qn with respect to a basis of V is
1. This generator is unique up to multiplication by an element in C �. Then fnqnþ1 ¼ uqn
for some element u A K �n . Since fn A GLðC½zpn �nVÞ we have that fnðqnþ1Þ A C½zpn �nV

and the g.c.d. of the coe‰cients of fnðqnþ1Þ w.r.t. a basis of V is again 1. We conclude that
u A C �.

Now we consider the positive integers n0 < n1 < n2 < � � � of condition (d). Assume

that qni has the form
Pd
j¼0

vjt
j with t ¼ zp

ni , d > 0 and vd 3 0. Then qni�1þ1 ¼ qni and

qni�1 ¼ c
Pd
j¼0

fni�1ðvjÞt j with c A C �. The degrees of fni�1ðvjÞ in z are bounded by Bpni�1
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and the degree of fni�1ðvdÞtd is f dpni . For i with pni�ni�1 > B we find that qni�1 has
degree f dpni . This implies that also q0 has degreef dpni . We conclude that for large
enough i the element qni has degree 0. As a consequence, there is an integer N such that
qn A V for nfN. The equality fnðzp

nÞqnþ1 ¼ cqn for nfN can be specialized at z ¼ 1
and yields qnþ1 ¼ qn and c ¼ 1. Further the substitution zp

n ¼ s A C yields that qn is also
an eigenvector for fnðsÞ for any s A C. Write qn ¼ v A V for nfN. Property (b) implies
that the line L :¼ CvHV is invariant under G. We conclude that N is the one-dimensional
submodule associated with this G-invariant line.

(2) In order to show that the di¤erential Galois group H of M is not a proper sub-
group of G, one has to prove that for any representation r : G! GLðWÞ, any H-invariant
line LHW is also G-invariant. One associates with this representation the projective sys-
tem fKn nW ;cng, where cn ¼ rðfnÞ. Let ~MM denote the corresponding iterative di¤erential
module. The H-invariant line L provides a one dimensional iterative submodule N of ~MM.
The conditions (a)–(d) are again satisfied in this new situation and according to part (1) of
the proof we conclude that N is associated with a G-invariant line L1 HV . Clearly L ¼ L1

and thus L is invariant under G. We conclude that H ¼ G.

(3) The case R ¼ C½z; z�1� can be treated in a similar way. We will omit the details.

(4) The module M has RnV as R-lattice, invariant under all fn and all qð jÞ. The
solution space for M can be realized as a C-vector space W HC½½z� 1��nV . The evalu-
ation map C½½z� 1��nV ! V (i.e., dividing by ðz� 1Þ) induces an isomorphism W ! V .
The last statement of the lemma follows from the canonical (i.e., compatible with all con-
structions of linear algebra) identification of the solution space for M with V . r

Continuation of the proof of theorem 7.3. We consider the case where G is generated

as an algebraic group by its connected unipotent subgroups. We will need the following
lemma.

Lemma 7.5. Let U be a connected unipotent group over the field C. There exists a

morphism a : A1
C ! U of C-varieties with að1Þ ¼ 1 A U and such that U is generated as an

algebraic group by the image of a.

Proof. We will prove this by induction on the dimenson of U. If the dimension
of U is 1, then U is isomorphic to the additive group Ga and the statement is trivial.
If the dimension of U is greater than 1, then the centralizer of U contains a subgroup C
isomorphic to Ga. By induction there is a morphism a1: A

1
C ! U=C with the required

properties. It is known that the morphism U!p U=C admits a section r : U=C! U. This
means that r is a morphism of C-varieties such that p � r is the identity on U=C. The map
a2 :¼ r � a1: A1

C ! U has the property that the Zariski closure U1 of the group generated
by a2ðCÞ maps surjectively to U=C. If U1 happens to be U, then a2 has (after a shift in
order to assure a2ð1Þ ¼ 1) the required properties. If U1 3U then we may consider instead
of U the direct product C�U1. Indeed, this group maps surjectively to U and has the same
dimension as U. We propose here a map a3: A

1
C ! C�U1 of the form a3ðcÞ ¼

�
bðcÞ; a2ðcÞ

�
for a suitable b. Let U2 denote the Zariski closure of the group generated by a3ðCÞ. It suf-
fices to choose b such that the map U3 ! C�U1=½U1;U1� is surjective. Indeed, it will fol-
low that the kernel of the projection map U2 ! U1 is not finite and thus U2 ¼ C�U1.
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Write H :¼ U1=½U1;U1� and a for the induced map A1
C !H. The group H is

isomorphic to a product Gm
a . The image of a does not lie in a proper algebraic

subgroup of H and we have to produce a b : A1 ! CGGa such that the image of
ðb; aÞ : A1

C ! C�H does not lie in a proper algebraic subgroup. One knows that any
proper algebraic subgroup of Gmþ1

a is contained in the zero set of some additive poly-
nomial f :¼

P
nf0

ða0;nx pn

0 þ � � � þ am;nx
pn

m Þ, where x0; . . . ; xm denote the standard coor-

dinates for Gmþ1
a . One easily sees that b given by bðcÞ ¼ cd with suitable d > 1 and pF d,

has the required property. r

Corollary 7.6. Suppose that G is generated by its connected unipotent subgroups.

Then there are finitely many morphisms of C-varieties aj : A
1
C ! G, j ¼ 1; . . . ; s with

ajð1Þ ¼ 1 A G such that G is generated as an algebraic group by the union of the images of

the aj.

Proof. Let U be a maximal connected unipotent subgroup of G. Then every maxi-
mal connected unipotent subgroup of G is conjugated to U. The group G is already gen-
erated by finitely many conjugates of U. Let a : A1

C ! U satisfy the properties of lemma
7.5. Then for finitely many g1; . . . ; gs A G, the maps aj ¼ gjag

�1
j have the properties of the

lemma. r

We apply lemma 7.4 with the following data:

(i) Any sequence n0 < n1 < n2 < � � � with limðniþ1 � niÞ ¼y.

(ii) fn ¼ 1 if n is not equal to some ni.

(iii) fni ¼ ajðzp
ni Þ such that every aj occurs infinitely often.

The conditions (a)–(d) are obviously satisfied and the first part of the theorem is
proved.

We suppose now that G is a connected linear algebraic group. Fix a maximal connected
unipotent subgroup U and a maximal torus T. It is well known that G is generated as
an algebraic group by finitely many conjugates of U and of T. The morphism a : A1

C ! U
of lemma 7.5 has also the property that the Zariski closure of the group generated by aðC �Þ
is equal to U. Indeed, að0Þ lies in the Zariski closure of aðC �Þ. There is a morphism of
b : A1nf0g !T such that bð1Þ ¼ 1 and the group generated by bðC �Þ is Zariski-dense in
T. Indeed, it su‰ces to produce a map b such that w � b is not the constant map with image
f1g for any non trivial character of T. Let G be a suitable finite set of conjugates of a and
b. Then one applies lemma 7.4 with the following data:

(i) and (ii) as before and (iii) fni ¼ gðzpni Þ with g A G and such that every g A G occurs
infinitely often. The second part of the theorem now follows.

Corollary 7.7. Let X be a (smooth, irreducible, projective) curve over C with function

field K and let SHX be a non-empty finite set.
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(1) Then any connected algebraic group G such that G=pðGÞ ¼ f1g can be realized as a

di¤erential Galois group of an iterative di¤erential module over K, which is regular outside S.

(2) Suppose moreover that there exists a non constant regular function on XnS without

zeros. Then any connected linear algebraic group G can be realized as a di¤erential Galois

group of an iterative di¤erential module over K which is regular outside S.

(3) Any connected linear algebraic group can be realized for the pair ðX ;SÞ if and only

if IsomX ;S;1 contains an element of infinite order.

Proof. (1) The coordinate ring OðXnSÞ of XnS is a finite extension of some ring
C½z�. The corresponding morphism c : X ! P1

C has the property that c�1ðyÞ ¼ S. Let N
be an ID-module over CðzÞ which is regular outside y and has the required di¤erential
Galois group G and representation. Since G is connected, the ID-module M ¼ KnCðzÞN
has the same di¤erential Galois group and representation.

The proof of (2) is deduced from the existence of a non constant morphism
f : X ! P1

C with SH f �1ð0ÞW f �1ðyÞ.

(3) According to theorem 7.1, the condition that IsomX ;S;1 contains an element of
infinite order is necessary since Gm is supposed to be realizable. Suppose that this condition
is satisfied and let G be a connected linear algebraic group. T denotes a maximal torus of
G and UðGÞ is the normal algebraic subgroup generated by all the connected unipotent
subgroups of G. The assumption on ðX ;SÞ implies that T can be realized as di¤erential
Galois group. The same holds for UðGÞ. An interlacing of the two projective systems for
T and UðGÞ with ‘‘gaps’’ as in lemma 7.4, provides a projective system with di¤erential
Galois group G. We will omit the details. r

8. p-adic di¤erential equations

Let Cp denote the completion of the algebraic closure of Qp. On the field CpðzÞ
one considers a valuation which is called the Gauss norm. The Gauss norm kPkgauss of
a polynomial P ¼

P
ciz

i A Cp½z� is defined as the maximum of the absolute value of its

coe‰cients. The Gauss norm
T

N





 




gauss

of a rational function is defined as
kTkgauss
kNkgauss

. The

completion of the field CpðzÞ with respect to this Gauss norm is denoted by dCpðzÞgauss. The

di¤erentiation
d

dz
on CpðzÞ is continuous with respect to the Gauss norm and extends to a

continuous derivation of dCpðzÞgauss. The field of constants of both di¤erential fields CpðzÞ
and dCpðzÞgauss is the algebraically closed field Cp. The valuation rings of both CpðzÞ anddCpðzÞgauss are invariant under the operations

1

n!

d

dz

� �n
. The residue field of both fields

is FpðzÞ. This field inherites an iterative di¤erentiation, induced by the
1

n!

d

dz

� �n
, which

coincides with the fqðnÞz g.

A p-adic di¤erential equation is a di¤erential equation over either the di¤erential field

CpðzÞ ordCpðzÞgauss. The aim of this section is to investigate the relation between di¤erential
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equations overdCpðzÞgauss and iterative di¤erential equations over FpðzÞ. In our setup we will
be slightly more general and allow other residue fields than FpðzÞ and slightly less general in
the sense that we will avoid non-discrete valuation rings like the ring of integers of Cp.

The setup and some notations. R is a complete discrete valuation ring. Its field of
fractions F has characteristic 0 and is equipped with a di¤erentiation qF , which induces

the iterative derivation fqðnÞF g with q
ðnÞ
F ¼

qn
F

n!
. The residue field K of R has characteristic p.

Further p A R denotes a generator of the maximal ideal of R. The absolute ramification

index e of R is given by peR ¼ pR. Then we assume the following:

(a) R is invariant under all q
ðnÞ
F .

(b) qFp ¼ 0.

(c) The iterative derivation on K, induced by the fqðnÞF g is denoted by fqðnÞK g. We
require that q

ð1Þ
K 3 0.

Example. Let L be any complete discretely valued field of characteristic 0 and with
a residue field of characteristic p > 0. One considers the Gauss norm on LðzÞ and the

completion F of LðzÞ with respect to the Gauss norm. The di¤erentiation f 7! df

dz
on LðzÞ

is continuous with respect to the Gauss norm and extends to a di¤erentiation on F . Now F

satisfies all conditions above. Thus the usual p-adic di¤erential equations are present in our
setup.

Let ðM; qÞ be a di¤erential module over F . We investigate R-lattices of M, i.e., the
R-submodules of M generated by a basis of M over F .

Proposition 8.1. Let a di¤erential module ðM; qÞ over F of dimension d be given. Let
kf 0 be an integer. The following properties of an R-lattice L of M are equivalent.

(1) There exists an R-basis fejg of L such that all qej A pkL.

(2) L is invariant under the qðnÞ :¼ qn

n!
for all n < pkþ1.

Proof. ð1Þ ) ð2Þ will be proved by induction on k. Take k ¼ 0. Then q
P
j

rjej, with

all rj A R, belongs to L since qej A L and qF ðrjÞ A R. Thus L is invariant under q and also

under qðnÞ ¼ qn

n!
for n < p.

Suppose that ð1Þ ) ð2Þ holds for k � 1 and that (1) holds for k. Then L is invariant

under qðnÞ for n < pk and we only have to show that L is also invariant under qðp
kÞ.

From qej A pkL one concludes that qðpÞej A pk�1L. Indeed, p!qðpÞej ¼ q pej A pkL.

The same reasoning implies that qðp
2Þej A pk�2L, qðp

3Þej A pk�3L and finally qðp
kÞej A L.
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Any element of L has the form
P

rjej with rj A R. Now qðp
kÞrjej ¼

P
aþb¼p k

q
ðaÞ
F rjq

ðbÞej shows
that L is invariant under qðp

kÞ.

ð2Þ ) ð1Þ is also proved by induction on k. The induction step contains again
other induction steps. We will indicate the procedure. The case k ¼ 0 is trivial. Consider
k ¼ 1. Put W :¼ L=pL and let qW on W be induced by q on L. Then ðW ; qW Þ is an ordi-
nary di¤erential module over the field K. Its p-curvature is 0 since L is invariant under
qðpÞ. There exists a basis w1; . . . ;wd of W over K such that all qWwj ¼ 0. Choose repre-
sentatives e1; . . . ; ed A L of w1; . . . ;wd . They form a free basis of L over R and qej A pL
for all j. If the absolute ramification index e is 1, then we are finished. Suppose now
e > 1. Then one considers a new basis e1 þ pa1; . . . ; ed þ pad with all aj A L and require

that qðej þ pajÞ A p2L. This amounts to relations qaj 1�
qej

p
modulo pL. One can see this

as equations qWaj ¼ bj in W where bj denotes the image of � qej

p
in W . Since the di¤er-

ential module ðW ; qW Þ is trivial, one concludes from property (c) that the image of qW
on W is equal to the kernel of q

p�1
W . In particular, there is a solution aj if q

p�1
W bj ¼ 0.

The latter condition is satisfied since q p�1 qej

p

� �
¼ p!

p
qðpÞej A pe�1L . This procedure is

repeated until a basis e1; . . . ; ed is found with qej A pL for all j.

Consider the case k ¼ 2. Let W ¼ L=pL. On this K-vector space we have a
‘‘truncated’’ iterative di¤erential module structure. By this we mean that the q

ðnÞ
W are

defined for n < p3 and satisfy the usual rules. There is a basis w1; . . . ;wd of W such that
qWwj ¼ q

ðpÞ
W wj ¼ 0.

The first step is to produce elements e1; . . . ; ed A L with images w1; . . . ;wd such that
qðpÞej A pL.

If the ramification index e is 1, then any choice for the ej has this property. If e > 1,
then we have that qðpÞej ¼ pmaj for some mf 1 and elements aj A L. For m < e, one tries
to find elements fe1 � pmb1; . . . ; ed � pmbdg such that qðpÞðej � pbjÞ A pmþ1L. For this one
has to solve the equations qðpÞbj ¼ aj in the space W . As before, K1 denote the subfield

f f A K j qK f ¼ 0g. The pair ðW ; q
ðpÞ
W Þ is now considered as a di¤erential module over the

field K1. This is again a trivial di¤erential module since ðqðpÞÞpW ¼ 0. Therefore a solution

bj exists if ðqðpÞÞp�1W aj ¼ 0. Since L is invariant under qðp
2Þ one has that ðqðpÞÞp�1qðpÞej A pL

and thus ðqðpÞÞp�1aj A pe�mL.

We conclude that there are elements ej with ej ¼ wj such that qðpÞej A pL. The next

step concerns qej. One has qej ¼ pma with a A L and mf 1. For m < 2e, one wants to
change ej into ej � pmb with b A L such that qðej � pmbÞ A pmþ1L and qðpÞðej � pmbÞ A pL.
If mf e, then the second condition is automatically satisfied and one can proceed as
before. Suppose now that 1em < e. Then a satisfies two properties namely:

(i) q p�1a A p2e�mL. This follows from qðpÞej A pL.

(ii) qðpÞa A pe�mL. This follows from pmqðpÞa ¼ qqðpÞej A pL.
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Thus q
p�1
W a ¼ 0 and q

ðpÞ
W a ¼ 0. We recall that K2 ¼ f f A K1 j qðpÞK f ¼ 0g and

that for a good choice of z the field K has basis fz j j 0e j < p2g over K2 and that

q
ðnÞ
K zm ¼ m

n

� �
zm�n holds for all n < p2 (see proposition 2.2). Then a can be written

as
P

i¼1;...;d;0e j<p2
aði; jÞz jwi with all aði; jÞ A K2. From q

p�1
W a ¼ 0 and q

ðpÞ
W a ¼ 0 one

deduces that aði; jÞ ¼ 0 for jf p� 1. Thus a solution b of qWb ¼ a has the formP
i¼1;...;d;0e j<p�1

aði; jÞ
j þ 1

z jþ1wi. Therefore qðej � pmbÞ A pmþ1L and qðpÞðej � pmbÞ A pL, as

required. This ends the proof of the case k ¼ 2.

We sketch the case k ¼ 3. One takes a basis w1; . . . ;wd of W with

qwj ¼ qðpÞwj ¼ qðp
2Þwj ¼ 0 for all j.

The elements w1; . . . ;wd are first lifted to elements e1; . . . ; ed A L such that qðp
2Þej A pL. The

next step is to modify the ej such that the additional property qðpÞej A p2L holds. The final
step modifies the ej again in order to obtain qej A p3L. Each of the steps involves smaller
steps, where a congruence modulo pmL is refined to a congruence modulo pmþ1. The same
pattern can be followed to give a proof for general k. r

Let M be a finite dimensional vector space over the valued field F . A norm on M is
a map k k: M ! Rf0 such that:

(i) kmk ¼ 0 if and only if m ¼ 0.

(ii) km1 þm2kemaxðkm1k; km2kÞ.

(iii) k fmk ¼ j f j � kmk for f A F and m A M.

All norms on M are equivalent since F is complete and the dimension of M is
finite. This means that for any two norms k k and k k� there are positive constants d;D
such that dkmk�e kmkeDkmk� holds for all m A M. In the sequel we will only consider
norms such that the values kmk are contained in jF j. One associates with a norm k k
the R-lattice fm A M j kmke 1g. This produces a bijection between norms and R-lattices.
An orthonormal basis fm1; . . . ;mdg for M with respect to a given norm is defined by the
property that k f1m1 þ � � � þ fdmdk ¼ maxðj fjjÞ holds for all f1; . . . ; fd A F . In other words
fm1; . . . ;mdg is an orthonormal basis if and only if it is a free basis of the R-lattice
fm A M j kmke 1g.

For an additive map A : M !M and a given norm k k on M, one defines

kAk :¼ sup
kAmk
kmk jm A M;m3 0

� �
. A priori, kAk can be y. For two additive maps

A;B with kAk; kBk < y one has kABke kAk � kBk. With this terminology we can now
formulate a limit case of proposition 8.1.

Theorem 8.2. Let ðM; qÞ be a di¤erential module of dimension d over F. One writes

qðnÞ for the operator
qn

n!
on M. The following conditions on M are equivalent.
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(1) There exists an R-lattice invariant under all qðnÞ.

(2) There exists a norm k k on M such that kqðnÞke 1 for all nf 0.

(3) There exists a norm k k on M such that sup
nf0

kqðnÞk < y.

(4) Fix a norm k k on M. There exists a constant c > 1 and for every e > 0 a basis

fm1; . . . ;mdg (depending on e) such that:

(a) C�1 maxðj fjjÞe k f1m1 þ � � � þ fdmdkeCmaxðj fjjÞ for all f1; . . . ; fd A F .

(b) kqmjke e for all j.

(5) There exists a norm k k and for every e > 0 an orthonormal basis fm1; . . . ;mdg
such that kqmjke e for all j.

Proof. We note that conditions (3) and (4) are independent of the chosen norm since
all norms are equivalent.

(1)) (5). Let k k denote the norm with L ¼ fm A M j kmke 1g invariant under all
qðnÞ. Apply now proposition 8.1.

(5)) (4) is obvious.

(4)) (3). We will show by induction that kqðnÞmke c2kmk holds for all
nf 0 and all m A M. Suppose this formula holds for n < N. Take e > 0 such that
ðc2ÞN�1ee 1 and let m1; . . . ;md be the corresponding basis of M. Write m ¼

P
j

fjmj.

Then qðNÞ
P
j

fjmj ¼
P
j

P
aþb¼N

qðaÞfjq
ðbÞmj. One has jqðaÞfjje j fjj. For b > 0 one has

kqðbÞmjke ðc2Þb�1ee 1 and kmjke c. From this the inequality kqðNÞmke c2kmk follows.

(3)) (2). One defines the function k k� onM by the formula kmk� ¼ maxðkqðnÞmkÞ.
It is easily verified that k k� is a norm on M and takes its values in jF j. Now

kqðaÞmk� ¼ maxðkqðnÞqðaÞmkÞ and this is ekmk� since qðnÞqðaÞ ¼ nþ a

n

� �
qðnþaÞ and

nþ a

n

� � e 1.

(2)) (1). The lattice L ¼ fm A M j kmke 1g is invariant under all qðnÞ. r

Another limit form of proposition 8.1 is the following.

Theorem 8.3. Let ðM; qÞ be a di¤erential module over F of dimension d. The following
statements are equivalent.

(1) For every integer kf 0 there is an R-lattice which is invariant under all qðnÞ with

n < pkþ1.

(2) For every integer kf 0 there is a basis m1; . . . ;md of M such that

qmj A pkðRm1 þ � � � þ Rmd Þ.
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(3) Let k k� be any norm on M. For every r > 1 there exists a positive constant CðrÞ
such that kqðnÞk�eCðrÞrn holds for all nf 0.

Proof. The equivalence between (1) and (2) is just proposition 8.1.

(1)) (3). Let k k be the norm corresponding to the lattice L. Then kqðnÞke 1 for

all n < pkþ1. We will give an estimate for kqðmÞk for all mf 0.

Define the real number wðsÞ by kqðp sÞk ¼ pwðsÞ. The equality qðp
sþ1Þ ¼ ðp

s!Þp

psþ1!
ðqðp sÞÞp

implies kqðp sþ1Þk ¼ pkðqðp sÞÞpk and thus wðsþ 1Þe 1þ pwðsÞ. It is given that wð jÞe 0 for

0e je k. One deduces from this that wðsÞe ps�k � 1

p� 1
for s > k. In order to give an esti-

mate for kqðmÞk we write m as m0 þm1pþ � � � þmsp
s with all mi A f0; 1; . . . ; p� 1g. One

has kqðmÞke kqðp0Þkm0 � � � kqðp sÞkms . Then

p logkqðmÞke 1

p� 1

�
mkþ1ðp� 1Þ þ � � �msðps�k � 1Þ

�
and the latter is e

m

ðp� 1Þpk
. Thus kqðmÞke rmk with rk ¼ p

1

ð p�1Þ p k holds for all mf 0

and the special norm we started with. For the given norm on M, which is equivalent to
this special norm, we find kqðmÞk�eCkr

m
k for all mf 0 and a constant Ck which depends

on the comparison between k k and k k�. Further lim
k!y

rk ¼ 1.

(3)) (1). We fix an integer kf 0 and consider the collection of additive maps S on
M given by

S :¼ fðqðp0ÞÞa0 � � � ðqðpk�1ÞÞak�1ðqðpkÞÞak j a0; . . . ; ak�1 A f0; 1; . . . ; p� 1g; ak f 0g:

We claim that lim
s AS
ksk� ¼ 0. It su‰ces to prove that lim

n!y
kðqðpkÞÞnk ¼ 0. We write

n ¼ n0 þ n1pþ � � � þ ns p
s with all ni A f0; 1; . . . ; p� 1g. Then

kðqðpkÞÞnk�e ðkqðpkÞk�Þn0 � � �
�
kðqðp kÞÞp

s

k�
�ns :

As in the proof of (1)) (3) one derives the equality kðqðpkÞÞp
s

k� ¼ kp
p s�1
p�1 qðp

kþsÞk�. We

are given the inequalities kqðmÞk�eCðrÞrm, in which we make the choice r ¼ p
1

p kþ1ð p�1Þ.

This yields kqðpkþsÞk�eCðrÞp p�s for every sf 0. One derives that for n (as above) that
p logkðqðp kÞÞnk�e�nþ s � p logCðrÞ and moreover se p log n. Thus lim

n!y
kðqðpkÞÞnk� ¼ 0

and we have proved our claim.

Now we introduce a new norm k k on M by the formula:

kmk ¼ supfksðmÞk� j s A Sg:

This expression is finite since lim
s AS
ksk� ¼ 0. It is easily verified that k k is actually

a norm. Now we observe that for s A S and any j with 0e je k there is an integer N
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and an element s 0 A S such that qðp
jÞs ¼ Ns 0. This implies that kqðp jÞmke kmk if 0e je k.

Let L be the R-lattice fm A M j kmke 1g. Then clearly L is invariant under qðnÞ for all
n < pkþ1. r

We now describe a tool of Dwork’s theory of p-adic di¤erential equations, namely
the ‘‘generic disk’’ (see for instance [D-G-S], p. 92 and [C]). For this we specialize F to be
the completion of LðzÞ with respect to the Gauss norm, where L is a complete, discretely
valued, subfield of Cp. The norm kAk of a matrix A ¼ ðAi; jÞ with coe‰cients in F is defined
by kAk ¼ maxðkAi; jkÞ. Consider a matrix di¤erential equation y 0 ¼ Ay over F of size d.

The iterated equations have the form
1

n!

d

dz

� �n
y ¼ Any. One introduces a larger complete

valued field WIL which contains an element t of absolute value 1 such that its image in
the residue field is transcendental over the residue field of L. The field F is mapped into W
by sending z to t. The open disk

�
a A W

ja� tj < 1
�
is called the generic disk. The di¤er-

ential equation y 0 ¼ Ay has a formal fundamental solution U at the point t with UðtÞ ¼ 1.
This is the expression U ¼ 1þ

P
nf1

AnðtÞðz� tÞn, where AnðtÞ denotes the image of An under

the map F ¼ LðzÞ ! W. The verification of this formula is straightforward. The conver-
gence of U on (part of ) the generic disk and the behaviour of the absolute values of the
coe‰cients, i.e., the kAnðtÞk ¼ kAnk has been studied in detail by B. Dwork, Ph. Robba, G.
Christol, B. Chiarellotto et al. Corollary 4.8.8, p. 142 of [C] states that U converges on the
full generic disk if and only if for every positive e there is an He A GLðd;FÞ such that upon
posing y ¼ He f , the transformed equation f 0 ¼ ~AAf with ~AA :¼ H�1e AHe �H�1e H 0e satisfies
k ~AAk < e. The convergence on the full generic disk means that for every r > 1 there is some
constant CðrÞ with kAnkeCðrÞrn for all nf 0. The other condition in the cited Corollary
4.8.8 translates into statement (2) of theorem 8.3. Thus theorem 8.3 implies this result of
[C].

A special case of the other limit situation, namely the equivalence of (3) and (4)
in theorem 8.2, can be translated into proposition 4.8.9 of [C] (see also [Ro]) which states
that the boundedness of the fundamental solution U on the generic disk is equivalent to the
assertion:

There exists a positive d and for every e > 0 an He A GL
�
d;LðzÞ

�
such that kHeke 1,

jdetHejf d and kH 0eH�1e � Ake e.

It seems that, apart from the above criterion by Robba, p-adic di¤erential equations
of this type have not been studied extensively.

For the next theorem we make the following assumptions on F ;K and the derivation qF
on F:

Let R0 be a complete discrete valuation ring with maximal ideal pR0, residue field
k ¼ R0=pR0 and field of fractions L. The field LðzÞ is provided with the Gauss norm and

the derivation
d

dz
. Then F is the completion of LðzÞ and qF is the continuous extension of

d

dz
to F .

The valuation ring of F will be denoted as before by R. We observe that the residue
field R=pR of F is equal to K ¼ kðzÞ and that the induced iterative derivation fqðnÞK g on K

coincides with fqðnÞz g.
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Theorem 8.4. Let F ;K and qF be as above and let N be an iterative di¤erential

module over K. Then there exists a di¤erential module ðM; q�Þ over F and an R-lattice

LHM invariant under all qðnÞ� such that the induced iterative di¤erential module L=pL over

K is isomorphic to N.

Proof. Define, as before, the subfields Ks of K by K1 ¼ fa A K j qKðaÞ ¼ 0g and

Ksþ1 ¼ fa A Ks j qðp
sÞ

K a ¼ 0g. Clearly Ks ¼ kðzp sÞ. Let Rs be the completion of the valua-

tion ring R0½zp
s �ð pÞ and let Fs be the field of fractions of Rs. Then one has the properties:

(i) Rs=pRs ¼ Ks.

(ii) Fsþ1HFsHF .

(iii) Rs is free over Rsþ1 with basis 1; zp
s

; z2p
s

; . . . ; zðp�1Þp
s

.

(iv) qFRs A psR.

Let L denote a free R-module with basis e1; . . . ; ed . Then L=pL is a vector space
over K with basis f1; . . . ; fd , the images of e1; . . . ; ed . We identify L=pL with N and regard
f1; . . . ; fd as a basis of N over K . Further M will be F nR L. The aim is to produce a
structure of di¤erential module ðM; q�Þ such that L is invariant under all qðnÞ� and such that
the induced iterative di¤erential module L=pL is isomorphic to N.

Define N1 ¼ fn A N j qðp0Þn ¼ 0g and by induction Nsþ1 ¼ fn A Ns j qðp
sÞn ¼ 0g. Each

Ns is a vector space of dimension d over the field Ks and KnKs
Ns ! N is an isomorphism.

Let f1ðsÞ; . . . ; fdðsÞ denote a basis of Ns over Ks. Now we will make a sequence of choices:

(1) Elements e1ð1Þ; . . . ; edð1Þ A L with images f1ð1Þ; . . . ; fdð1Þ in N. Put
L1 ¼ R1e1ð1Þ þ � � � þ R1edð1ÞHL. Then L1 maps surjectively to N1.

(2) Choose elements e1ð2Þ; . . . ; edð2Þ A L1 with images f1ð2Þ; . . . ; fdð2Þ A N2 HN1.
Define L2 ¼ R2e1ð2Þ þ � � � þ R2edð2Þ. Then L2 maps surjectively to N2.

(3) By induction on s, one defines Ls ¼ Rse1ðsÞ þ � � � þ RsedðsÞ such that the images
of the eiðsÞ are the fiðsÞ and LsHLs�1 for all sf 2.

We want to define q�: L! L by the properties:

(a) q� is additive and q�ðrmÞ ¼ qF ðrÞmþ rq�ðmÞ for all m A L and r A R.

(b) q�
�
eiðsÞ

�
A psL for i ¼ 1; . . . ; d and all sf 1.

Fix an m A L. Write m ¼
P

cjðsÞejðsÞ with cjðsÞ A R. Then q�m should beP
qF
�
cjðsÞ

�
ejðsÞ þ

P
cjðsÞq�

�
ejðsÞ

�
. Thus we want to define q�m by the sequence of con-

gruence relations: q�m1
P

qF
�
cjðsÞ

�
ejðsÞ modulo psL for sf 1. The only thing to verify

is that these congruence relations are compatible.

Write ejðsÞ ¼
P
i

rði; jÞeiðsþ 1Þ with all rði; jÞ A Rs.
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Then one has m ¼
P
i

�P
j

cjðsÞrði; jÞ
�
eiðsþ 1Þ and we have to show thatP

i

�P
j

qF
�
cjðsÞrði; jÞ

��
eiðsþ 1Þ is congruent to

P
j

qF
�
cjðsÞ

�
ejðsÞ modulo psL. This fol-

lows at once from rði; jÞ A Rs and qF
�
rði; jÞ

�
A psR.

We conclude that q�: L! L is well defined and has the properties (a) and (b).
From proposition 8.1 it follows that L is invariant under all qðnÞ� . Let fqðnÞ� g also denote the
induced iterative di¤erential structure on L=pL ¼ N. From the construction it follows that
qðp

s�1Þ
� maps Ls into pL. Since Ls maps to Ns, one finds that any n A Ns satisfies q

ðp jÞ
� n ¼ 0

for j ¼ 0; . . . ; s� 1. Therefore the fqðnÞ� g coincide with the given fqðnÞg on N. r

Let ðM; qÞ be a di¤erential module over F and L an R-lattice which is invariant
under all qðnÞ. Denote by N the induced iterative di¤erential module over K. The module
ðM; qÞ has a di¤erential Galois group G over the algebraic closure C of the field
of constants C of F . The iterative di¤erential module N has a di¤erential Galois group H
over the algebraic closure of the field of constants of K. These two groups are obviously
related. One suspects that ‘‘H is the reduction of G modulo p’’. We will make this more
precise.

The field C is a complete valued subfield of F . We assume that the valuation ring of
C maps surjectively to the field of constants of K, i.e., the residue field of F . Let O

C
denote

the valuation ring of C and let m be its maximal ideal. Then O
C
=m is the algebraic closure

of the field of constants of K.

Conjecture 8.5. After replacing the given di¤erential module ðM; qÞ over F by some

equivalent di¤erential module there exists an R-lattice L, invariant under all qðnÞ, which
determines a linear algebraic group GO over O :¼ O

C
such that:

(1) CnO
C
GO ¼ G and

(2) O
C
=mnO

C
GO contains H as algebraic subgroup.

Moreover if G is a finite group then G and H coincide.

We will indicate the way an R-lattice L, invariant under all qðnÞ, determines a
linear algebraic group over O

C
. Choose a basis of L over R. The di¤erential module

ðM; qÞ is represented by a di¤erential equation in matrix form y 0 ¼ Ay. The iterative dif-
ferential equations are qðnÞy ¼ Any for nf 1. The coe‰cients of the matrices An are in R.
Consider a matrix of indeterminates ðXi; jÞ and let D be its determinant. The F -algebra

F fXi; jg;
1

D

� �
is made into a di¤erential algebra over F by ðqXi; jÞ ¼ AðXi; jÞ. We note

that ðqðnÞXi; jÞ ¼ AnðXi; jÞ holds for any nf 1. Let I HF fXi; jg;
1

D

� �
be a maximal di¤er-

ential ideal. Then the factor ring F fXi; jg;
1

D

� �
=I is ‘‘almost’’ a Picard-Vessiot for ðM; qÞ

over F . The ‘‘almost’’ comes from the fact that the field of constants C of F is not alge-
braically closed. After replacing F by the compositum of F and a finite extension of C, we

may regard F fXi; jg;
1

D

� �
=I as a Picard-Vessiot ring. The elements s of the di¤erential
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Galois group G can be represented by the invertible matrices B with coe‰cients in C such

that the automorphism s of CF fXi; jg;
1

D

� �
given by ðsXi; jÞ ¼ ðXi; jÞB�1 leaves the ideal

generated by I invariant. The linear algebraic group GO over O
C
is the one induced by the s

such that B and B�1 have their coe‰cients in O
C
. Now we consider the ring R fXi; jg;

1

D

� �
and the ideal J ¼ I XR fXi; jg;

1

D

� �
. This ring and its ideal J are stable under all qðnÞ and

under the action of GO. Let p denote a generator of the maximal ideal of the valuation

ring of C. Then R fXi; jg;
1

D

� �
=ðpÞ ¼ K fXi; jg;

1

D

� �
is an iterative di¤erential ring over K.

The image J1 HK fXi; jg;
1

D

� �
of the ideal J is an iterative di¤erential ideal and moreover

stable under the action of G :¼ GO nO
C
=m. Let J2 I J1 be a maximal iterative di¤erential

ideal. Then K fXi; jg;
1

D

� �
=J2 is ‘‘almost’’ a Picard-Vessiot ring of the iterative di¤erential

module N ¼ L=pL. The finite extension of C, considered above, can be taken su‰ciently

large such that K fXi; jg;
1

D

� �
=J2 can be seen as a Picard-Vessiot ring. The algebraic group

H consists of the invertible matrices B such that the K-algebra automorphism s of

K fXi; jg;
1

D

� �
, described by ðsXi; jÞ ¼ ðXi; jÞB�1, leaves the ideal J2 invariant. It can be

shown that H leaves every iterative di¤erential ideal invariant. In particular, the ideal J1 is
invariant. Thus J1 is invariant by both H and G. Neither inclusion seems evident. The
above conjecture states however that for good choices of a di¤erential module over F

equivalent to the given one and a good choice of an R-lattice invariant under all qðnÞ the
two groups H and G coincide.

Examples 8.6. (1) The following example was analyzed in discussions with B.
Chiarellotto and N. Tsuzuki. One considers the equation qy ¼ Ay with a constant matrix A

with coe‰cients, say, in Cp. We take F to be the completion of CpðzÞ with respect to the

Gauss norm. The residue field of F is K ¼ FpðzÞ. Then qðnÞy ¼ An

n!
y. Using the Jordan

normal form of A one easily verifies that the following conditions are equivalent:

(i) The equation satisfies for every kf 1 condition (1) of proposition 8.1.

(ii) The fundamental solution U ¼ 1þ
P
nf1

An

n!
ðz� tÞn on the generic disk has

bounded coe‰cients.

(iii) Every eigenvalue a of A satisfies jaje p�1=ð p�1Þ.

Suppose that A has the above equivalent properties. Then the iterative di¤erential

module over K is trivial. Indeed, this follows from
an

n!

  < 1 for all nf 1 and all eigenvalues

a of A. The determination of the di¤erential Galois group over F is more subtle. The fun-
damental matrix eAz is convergent and bounded by 1 for jzj < 1. If all the eigenvalues of A
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have absolute value strictly less than p�1=ð p�1Þ, then eAz is convergent for jzje r for some
r > 1. From this it follows that eAz has its coe‰cients in F . If some eigenvalue a of A has
absolute value p�1=ð p�1Þ, then this is no longer true.

To understand this situation we analyze the expression epz, where p is defined by
the equation pp�1 ¼ �p. In order to see that epz does not belong to F one embeds this field

into a certain algebra B. This algebra consists of the Laurent series
Py

n¼�y
anz

n having the
properties:

(a) The set fjanjg is bounded.

(b) lim
n!þy

janj ¼ 0.

A straightforward calculation shows that the equation y 0 ¼ py has no solution30 in
B. Thus the equation y 0 ¼ py has only the trivial solution 0 in F . The p th power of epz is
e ppz and lies in F , since its radius of convergence is strictly larger than 1. Thus the Picard-
Vessiot field FðepzÞ of the equation y 0 ¼ py is a p-cyclic extension of F . The equations

qðnÞy ¼ pn

n!
y induce an iterative di¤erential module over FpðzÞ which is trivial since

pn

n!

  < 1

for all nf 1. This unsatisfactory result is due to the fact that the multiplicative group over
Fp has no cyclic subgroup of order p. A remedy is to consider the inhomogeneous equation

y 0 ¼ pyþ 1 or (equivalently) the matrix di¤erential equation v 0 ¼ p 1

0 0

� �
v. This matrix

di¤erential equation is the direct sum of the trivial 1-dimensional equation with the equa-

tion y 0 ¼ py. This leads to equations qðnÞv ¼
pn

n!

pn�1

n!

0 0

0@ 1Av. The induced iterative di¤er-

ential equation over FpðzÞ has the form qðp
kÞv ¼ 0 1

0 0

� �
v for all kf 0. This corresponds

to the inhomogeneous iterative di¤erential equation qðp
kÞy ¼ 1 for all kf 0. The solu-

tion x ¼
P
nf0

zp
n

is algebraic over FpðzÞ and satisfies the equation x� xp ¼ z (compare with

lemma 5.2). We conclude that this iterative di¤erential equation has a p-cyclic di¤erential
Galois group. The corresponding extension is precisely the residue field extension of the
above Picard-Vessiot extension F HFðepzÞ.

Now we return to the general case y 0 ¼ Ay where all the eigenvalues of A have
absolute value less than or equal to p�1=ð p�1Þ. Let a1; . . . ; as denote the distinct eigenvalues
with absolute value p�1=ð p�1Þ. The Picard-Vessiot extension for the equation y 0 ¼ Ay is the
field Fðea1z; . . . ; easzÞ. Each element ea iz defines a p-cyclic extension of F . These p-cyclic
equations can be dependent. The di¤erential Galois group G is the quotient of F s

p with

respect to the Fp-subspace
�
ðm1; . . . ;msÞ

jm1a1 þ � � � þmsasj < p�1=ð p�1Þ
�
.

After adding to the equation y 0 ¼ Ay a trivial di¤erential equation (i.e., the di¤eren-
tial moduleM of the equation y 0 ¼ Ay is replaced byMlFe1 l � � �lFes with qei ¼ 0 for
all i), one can produce a matrix di¤erential equation y 0 ¼ By and an induced iterative dif-
ferential equation over FpðzÞ which has the same di¤erential Galois group as the equation
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y 0 ¼ Ay over F . Moreover the Picard-Vessiot field of the iterative di¤erential equation is
the residue field extension of the Picard-Vessiot field of y 0 ¼ Ay over F . We note that our
ad hoc method is related to the ‘‘deformation of Artin-Schreier to Kummer’’, or in other
words the deformation of the additive group Ga in characteristic p to the multiplicative
group Gm in characteristic 0 (see [S-O-S]).

(2) qy ¼ Az�1y with A a constant matrix with coe‰cients in Cp. Then
qny ¼ AðA� 1Þ � � � ðA� nþ 1Þz�ny for all n. One can verify the following results:

(i) The conditions of proposition 8.1 are satisfied for all kf 1 if and only if the
eigenvalues of A are in Zp.

(ii) There exists an invariant lattice if and only if A is semi-simple and all its eigen-
values are in Zp.

Suppose that A is a diagonal matrix with diagonal entries a1; . . . ; ad A Zp. The
di¤erential Galois group G over the field F ¼ CpðzÞ (or over its completion F̂F ) is the sub-
group of the torus Gd

m;Cp
consisting of the elements ðt1; . . . ; td Þ satisfying tm1

1 � � � t
md

d ¼ 1 if

and only if m1a1 þ � � � þmdad A Z. The iterative di¤erential module N over K ¼ FpðzÞ has

a basis w1; . . . ;wd such that qðnÞwi ¼
ai

n

� �
z�nwi for every i and n. This example appeared

already after lemma 4.1. It is easily seen that the di¤erential Galois group H is the sub-
group of the torus Gd

m;Fp
defined by the same equations as the above group G.

Example 8.7 ( p-adic hypergeometric di¤erential equations). The hypergeometric
di¤erential equation HGða; b; cÞ has the form

zðz� 1ÞF 00 þ
�
ðaþ bþ 1Þz� c

�
F 0 þ abF ¼ 0:

We consider this equation for a; b; c A Zp and are interested in the behaviour of the
fundamental solution matrix on the ‘‘generic disk’’. Let y 0 ¼ Ay be a matrix equation

representing HGða; b; cÞ. Define the matrices An by the formula
1

n!

d

dz

� �n
y ¼ Any. The

fundamental matrix on the generic disk has the form U ¼ 1þ
P
nf1

AnðtÞðz� tÞn. Accord-

ing to [D-G-S], proposition 8.1, U converges on the open generic disk
�
z
jz� tj < 1

�
if

a; b; c A Zp. For a; b; c A Zp XQ (and some further conditions on a; b; c), theorem 9.2 of
[Dw] produces cases for which the fundamental matrix is also bounded on the generic disk.
This is the inspiration for the next theorem. It seems possible to deduce our result as a limit
case of [Dw], theorem 9.2. However we present here an elementary proof, found in discus-
sions with F. Beukers. We start with a lemma, which is probably known.

Lemma 8.8. Let vp be the additive p-adic valuation on Qp. Let x A Zp and let n be

a positive integer. Let x ¼
P

xi p
i and n ¼

P
ni p

i denote the usual p-adic expansions. A
negat i ve in t erva l o f l eng th k for x is a sequence i0; i0 þ 1; . . . ; i0 þ k � 1 of non-

negative integers such that:

(a) xi0�1 > ni0�1 or xi f ni for all i < i0.

(b) xi0 < ni0 .
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(c) xi0þj e ni0þj for j ¼ 1; . . . ; k � 1.

(d) xi0þk > ni0þk.

(The length k is allowed to be infinite, in which case condition (d) is empty.) Then

vp

 
x

n

� �!
is the sum of the lengths of the negative intervals.

Proof. Let
P

yi p
i be the p-adic expansion of y :¼ x� n. Suppose first that y is a

non-negative integer. Then

vp

 
x

n

� �!
¼ vpðx!Þ � vpðn!Þ � vpðy!Þ

¼ x�
P

xi

p� 1
� n�

P
ni

p� 1
� y�

P
yi

p� 1
¼

P
i

ðni þ yi � xiÞ

p� 1
:

The latter formula is easily seen to be valid in general, i.e., without assuming that x; y are
non-negative integers.

One has that n0 þ y0 is equal to x0 if n0 e x0 and is equal to x0 þ p if n0 > x0. One

concludes that vp

 
x

n

� �!
¼ 0 if there is no negative interval. Let now i0; . . . ; i0 þ k � 1

denote the first negative interval. For notational convenience we suppose i0 ¼ 0 and that
k is finite. Then one has that

x0 ¼ n0 þ y0 � p; x1 ¼ n1 þ y1 þ 1� p; . . . ;

xk�1 ¼ nk�1 þ yk�1 þ 1� p; xk ¼ nk þ yk þ 1:

This gives the contribution k for the formula of vp

 
x

n

� �!
. If k is infinite then clearly x is

an integer and < n. Thus vp

 
x

n

� �!
¼ þy as required.

After this one can make the same calculation for the next negative interval. By
induction (and since n is a non-negative integer) the lemma follows. r

Theorem 8.9. Put X ¼ �a, Y ¼ �b, Z ¼ �c and let the p-adic expansions of

X ;Y ;Z be
P

Xnp
n,
P

Ynp
n,
P

Znp
n. Suppose that for every i one has either Xi < Zi < Yi

or Yi < Zi < Xi. Then the fundamental solution of HGða; b; cÞ is bounded on the generic disk

(or in other terms the matrices An are uniformly bounded ).

Proof. Let y 0 ¼ Ay be the matrix form of HGða; b; cÞ and, as above, the matrices An

are given by
1

n!

d

dz

� �n
y ¼ Any. Let F1;F2 denote two independent solutions (to be specified

later) of the scalar equation HGða; b; cÞ, then M :¼ F1 F2

F 01 F 02

� �
is a fundamental matrix for
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the equation and
1

n!

d

dz

� �n
M ¼ AnM. F1 satisfies the scalar equation HGða; b; cÞ. By dif-

ferentiating this equation one finds am; bm A QpðzÞ such that
1

m!

d

dz

� �m
F1 ¼ amF1 þ bmF

0
1.

The same equations hold for F2. One concludes that Am has the form

am bm

ðmþ 1Þamþ1 ðmþ 1Þbmþ1

� �
and that

am

bm

� �
¼ 1

F1F
0
2 � F 01F2

F 02 �F 01
�F2 F1

� � 1

m!

d

dz

� �m
F1

1

m!

d

dz

� �m
F2

0BBB@
1CCCA:

It su‰ces to show that the
1

m!

d

dz

� �m
Fi, for i ¼ 1; 2, are uniformly bounded with respect

to the Gauss norm. We take for F1;F2 standard solutions of HGða; b; cÞ given as expan-
sions in z, namely

F1 ¼
P
nf0

ðaÞnðbÞn
ðcÞnn!

zn and F2 ¼ z1�cð1� zÞc�a�b
P
nf0

ð1� aÞnð1� bÞn
ð2� cÞnn!

zn:

The condition on X ;Y ;Z implies that c is not an integer and the two series are the local
solutions of HGða; b; cÞ at the point z ¼ 0. It is easily seen that the Gauss norms of the
am; bm are uniformly bounded if the coe‰cients of these two series are uniformly bounded.

The coe‰cients of F1 can be written as

X

n

� �
�

Y

n

� �
Z

n

� � . A factor p in the denominator

of this expression corresponds with an index i which lies in a negative interval for Z. The
assumption Xi < Zi < Yi or Yi < Zi < Xi implies that i lies in a negative interval for X or

Y . One concludes that

X

n

� �
�

Y

n

� �
Z

n

� � A Zp.

For the second hypergeometric function F2 the X ;Y ;Z are replaced by ~XX ; ~YY ; ~ZZ with
X þ ~XX ¼ �1, Y þ ~YY ¼ �1, Z þ ~ZZ ¼ �2. It follows that for every i one has ~XXi < ~ZZi < ~YYi

or ~YYi < ~ZZi < ~XXi. This implies that the coe‰cients of F2 are also in Zp. r

8.1. A link with Grothendieck’s conjecture. One considers a number field F HQ.
Its ring of integers will be denoted by OF . For every non-zero pime ideal p of OF we denote

by FðpÞ the residue field. The field FðzÞ is provided with the di¤erentiation a 7! da

dz
and the

field FðpÞðzÞ is provided with the ‘‘standard’’ iterative derivation with respect to z. Let M
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be a di¤erential module over FðzÞ such that its di¤erential Galois G is finite. We note that
di¤erential Galois groups are only well defined if the field of constants is algebraically
closed. In particular, the above G is actually defined as the di¤erential Galois group of
QðzÞnFðzÞM over the di¤erential field QðzÞ.

Proposition 8.10. (1) For almost every non-zero prime ideal p of the ring of integers

of F, the di¤erential module M induces an iterative di¤erential module MðpÞ over the field

FðpÞðzÞ which has a finite di¤erential Galois group.

(2) Let a finite Galois extension EIFðzÞ be given such that QðzÞnFðzÞ E is isomor-

phic to the Picard-Vessiot field of QðzÞnFðzÞM over QðzÞ. Then for almost every non-zero

prime ideal p the di¤erential Galois group of FðpÞðzÞnMðpÞ over FðpÞðzÞ is equal to G.

Proof. (1) Let R denote the localization of OF ½z� with respect to the multipicative
set of all primitive polynomials. The non-zero prime ideals of R have the form pR where p

runs in the set of the non-zero prime ideals of OF . One can show that R is invariant under

all qðnÞ ¼ 1

n!

d

dz

� �n
. The same holds for any localization of R. Let EIFðzÞ denote a Galois

extension, with Galois group H, such that the compositum QE is the Picard-Vessiot field
of QðzÞnFðzÞM and such that EnFðzÞM has a basis e1; . . . ; ed of elements with qej ¼ 0
for all j. Let ~RR denote the integral closure of R in E. Let S denote the set of the rational
prime numbers p such that p divides the order of the Galois group of E over FðzÞ or such
that there exists a prime ideal p of OF above p for which pR ramifies in ~RR. We claim that

~RRS :¼ ~RR
1

p
; p A S

� �
is invariant under all qðnÞ.

Proof of the claim. Let p be a rational prime number with p B S. Consider a
prime ideal p of OF above p and a discrete valuation ring V of E lying above Rp. It
su‰ces to show that V is invariant under all qðnÞ. In proving this we may replace the
discrete valuation rings RpHV by their completions AHB. The ideals pA and pB are
the maximal ideals of A and B. The residue fields are FðpÞðzÞHL. Since this extension

is separable we may write L ¼ FðpÞðzÞ½T �=Q where Q ¼ T d þ bd�1T
d�1 þ � � � þ b0 is a

separable polynomial and the derivative of Q is invertible. Then also B ¼ A½t� ¼ A½T �=P,
with P ¼ T d þ ad�1T

d�1 þ � � � þ a0 such that ai ¼ bi holds for all i. The derivative PðtÞ0
is invertible in B. It su‰ces now to prove that qðnÞt A B for all nf 0. We will prove
this by induction on n. In proving the induction step we apply qðnÞ to the identity
td þ ad�1t

d�1 þ � � � þ a0 ¼ 0. This yields that PðtÞ0 � qðnÞt is equal to a polynomial expres-
sion involving qðiÞt for i ¼ 0; . . . ; n� 1 and some qðmÞaj. This ends the proof of the claim.

We continue with the above finite set of primes S and allow S to grow in the course of
the construction. Consider a lattice L of M over RS which is invariant under q on M (here
S has grown somewhat).

Choose a basis e1; . . . ; ed of EnM over E with qej ¼ 0 for all j. The lattice L0 gen-
erated over ~RRS by e1; . . . ; ed is invariant under H and all qðnÞ. Indeed, the action of H

commutes with q and the kernel of q on EnM, which is ðQe1 þ � � � þQedÞX ðEnMÞ, is
H-invariant. Further ~RRS is invariant under all qðnÞ.
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The set of H-invariant elements of L0 is an RS-lattice, invariant under all q
ðnÞ. After

enlarging S, the two lattices coincide. It follows that for every prime p B S and prime ideal
p above p, the operators qðnÞ induce a structure of iterative di¤erential module on L=pL. In
order to see that this iterative di¤erential module has a finite di¤erential Galois group, we
observe that the ring ~RRS=ðpÞ is isomorphic to L� L� � � � � L, where L is a finite Galois

extension of FðpÞðzÞ with Galois group equal to the decomposition subgroup of H for the
prime ideal p. Moreover L=pLn ~RRS=ðpÞ is isomorphic to the module L0=pL0 as itera-
tive di¤erential modules. Therefore the iterative di¤erential module L=pLnL is trivial.
In particular the di¤erential Galois group of the iterative module L=pL is a subgroup of
Gal

�
L=FðpÞðzÞ

�
, the decomposition subgroup of H w.r.t. p.

(2) We keep the notations of (1) above, but write G for the Galois group of E

over FðzÞ. The asumption that QðzÞnFðzÞ E ¼ QnF E is the Picard-Vessiot field of
QðzÞnFðzÞM over QðzÞ implies that G is the di¤erential Galois group of M. More-
over, EIFðzÞ is a ‘‘geometric Galois extension’’. This has the consequence that for
almost all primes p of OF the ideal p ~RR is prime and the residue field ~RR=p ~RR is a geo-

metric Galois extension of R=pR ¼ FðpÞðzÞ. The latter means that the extension remains
a Galois extension of fields after tensorization with FðpÞ over FðpÞ. See for these state-
ments [M-M], section 10.4, p. 87. We note further that Gal

�
QnF E=FðzÞ

�
is isomorphic

to GalðQ=FÞ �Gal
�
E=FðzÞ

�
.

The solution space V of M is, as usual, ker
�
q; ðQnF EÞnFðzÞM

�
. The group

Gal
�
QnF E=FðzÞ

�
acts on ðQnF EÞnFðzÞM and this action commutes with q. Thus

Gal
�
QnF E=FðzÞ

�
acts as a group of F -linear automorphisms of V . This is also the case

for the subgroup GalðQ=FÞ. Using Hilbert 90, one finds that the F -vector space W HV ,
consisting of the GalðQ=FÞ-invariant elements, has the property that the canonical map
QnF W ! V is an isomorphism. The group G operates faithfullly on W as F -linear
automorphisms. Fix a basis w; . . . ;wd of W and a basis m1; . . . ;md of M over FðzÞ. Write
wi ¼

P
j

li; jmj with li; j A QnF E. Since the wi and the mj are invariant under GalðQ=FÞ,

the same holds for the li; j. Therefore the li; j belong to E. Further E ¼ FðzÞðfli; jgÞ since
the action of G on W is faithful.

As is part (1) of this proof, we fix an RS-lattice LHM. After extending S, we
may suppose that L is invariant under q and W0 :¼ kerðq; ~RRS nLÞ is a free ðOF ÞS-module
in W ¼ kerðq;EnMÞ such that the natural map F nðOF ÞSW0 !W is an isomorphism.
The group G acts clearly on W0 and we may suppose (again after enlarging S) that for
every prime ideal p of ðOF ÞS the action of G on W0=pW0 is faithful. This FðpÞ-vector space
coincides with fa A ~RRS=p ~RRS nFð pÞðzÞL=pL j qðnÞa ¼ 0 for all nf 1g. Then FðpÞnW0=pW0

is the solution space of the iterative di¤erential module L=pL. Using that the action of G

on this space is faithful and that the Galois extension ~RRS=p ~RRS I FðpÞðzÞ is ‘‘geometric’’,
one finds that G is the di¤erential Galois group of the iterative di¤erential module
L=pL. r

A rather simple illustration of proposition 8.10 is: M ¼ QðzÞe and qe ¼ t

n
z�1e

with t; n A Z having g.c.d. 1 and n > 1. We take L ¼ RSe where S is the set of prime divi-
sors of n. For a prime p not dividing n the iterative di¤erential module L=pL is given by
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qðmÞe ¼ t=n

m

� �
z�me. The Galois group of this iterative di¤erential module is equal to the

cyclic group of order n.

Remarks. Grothendieck’s p-curvature conjecture asserts that the di¤erential Galois
group of M is finite if for almost all primes p the p-curvature is zero. In our case, the p-
curvature is the map ðqð1ÞÞp ¼ 0 on L=pL.

A variation, which might be easier to prove, of this conjecture is:

Let a di¤erential module M over FðzÞ be given. Suppose that for almost all primes p,
the iterative di¤erential module w.r.t. p exists and has a finite di¤erential Galois group G,
then the di¤erential Galois group of M is isomorphic to G.
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